SUGAR CATABOLISM IN BIFIDOBACTERIA

Autores/as

  • Enrique Bolado Martínez Centro de Investigación en Alimentación y Desarrollo, A. C. (Hermosillo, Son., México)
  • Evelia Acedo Félix Centro de Investigación en Alimentación y Desarrollo, A. C. (Hermosillo, Son., México)

Resumen

En la actualidad, hay un gran interés en el estudio de las bacterias con actividad probiótica, especialmente en aquellos géneros que constituyen la flora interstinal, como los son los miembros del género Bifidobacterium. Sin embargo, para garantizar una administración acertada de bacterias probióticas, es necesario considerar los requisitos nutricionales y ambientales de estos microorganismos, para ejercer su efecto probiótico. En bifidobacterias como en otros géneros de la flora intestinal, el catabolismo y la capacidad para generar productos antagónicos, depende de la actividad metabólica, como del catabolismo complejo de los carbohidratos y la actividad de la fosfoketolosa, y de las rutas de fermentación de los monosacáridos. Esta es una revisión bibliográfica acerca del catabolismo de los carbohidratos complejos en bifidobacterias y sus rutas de fermentación en el intestino


Palabras claves: bifidobacteria, probiotico, catabolismo, carbohidratos, fosfoketolasa

bifidobacteria, probiotic, catabolism, carbohydrate, phosphoketolase

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Delcenserie, V., N. Bechoux, T. Léonard, B. China and G. Daube 2004. Discrimination between Bifidobacteriumspecies from human and animal origin by PCR-restriction fragment length

polymorphism. J. Food. Prot. Vol. 67 No. 6: 1284-1288.

Leahy, S.C., D.G. Higgins, G.F. Fitzgerald and D. van Sinderen 2005. Getting better with bifidobacteria. J. Appl. Microbiol. Vol. 98: 1303-1315.

Kneifel, W., A. Rajal and K.D. Kulbe 2000. In vitro growth behaviour of probiotic bacteria in culture media with carbohydrates of prebiotic importance. Microb. Ecol. Health. Dis. Vol. 12: 27-34.

Scardovi, V. 1986. Genus Bifidobacterium. In Bergey’s Manual of Systematic Bacteriology [P.H.A. Sneath, N.S. Mair, M.E Sharpe, J.G. Holt] Ed Williams & Wilkins: 1418-1434.

Schell, M.A., M. Karmirantzou, B. Snel, D. Vilanova, B. Berger, G. Pessi, M.C. Zwahlen, F. Desiere, P. Bork, M. Delley, R.D. Pridmore, and F. Arigoni 2002. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl. Acad. Sci U.S.A. Vol. 99 No. 22: 1422-1427.

Ballongue, J. 1998. Bifidobacteria and probiotic action. In Lactic acid bacteria, Microbiology and functional aspects [S. Salminem, A. von Wright] Ed Marcel Dekker: 519-587.

Beerens, H., F. Gavini and C. Neut 2000 Effect of exposure to air on 84 strains of bifidobacteria. Anaerobe. Vol. 6 No. 2: 65-67.

Corona, E.V. 2003 Evaluación probiótica de especies de Bifidobacterium en cerdos lactantes. Tesis de Maestría. Centro de Investigación en Alimentación y Desarrollo, A.C. Hermosillo, Sonora. México.

Petschow, B.W. and R.D. Talbott 1990. Growth promotion of Bifidobacterium species by whey and casein fractions from human and bovine milk. J. Clin. Microbiol. Vol. 28 No. 2: 287-292.

Poch, M. and A. Bezkorovainy 1988. Growth-enhancing supplements for various species of the genusBifidobacterium. J. Dairy. Sci. Vol. 71: 3214-3321.

Ballongue, J. Op cit.

Silvi, S., C.J. Rumney and I.R. Rowland 1996. An assessment of three selective media for bifidobacteria in faeces. J. Appl. Bacteriol. Vol. 81: 561-564.

Rada, V. and J. Petr 2000. A new selective medium for the isolation of glucose non-fermenting bifidobacteria from hen caeca. J. Microbiol. Methods. Vol.43: 127-132.

Salyers, A.A., S.E.H. West, J.R. Vercellotti and T.D. Wilkins 1977. Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Appl. Environ. Microbiol. Vol. 34 No. 5: 529-533.

Slováková, L., D. Dušková and M. Marounek 2002. Fermentation of pectin and glucose, and activity of pectindegrading enzymes in the rabbit caecal bacterium Bifidobacterium pseudolongum. Lett. Appl. Microbiol. Vol. 35: 126-130.

Schell, M.A., et al, Op. cit.

Kneifel, W., et al, Op. cit.

Marx, S.P., S. Winkler and W. Hartmeier 2000. Metabolization of b-(2,6)-linked fructose-oligosaccharides by different bifidobacteria. FEMS Microbiol. Lett. Vol. 182: 163-169.

Salyers, A.A., et al, Op. cit.

Hopkins, M.J., J.H. Cummings and G.T. Macfarlane 1998. Inter-species differences in maximum specific growth rates and cell yields of bifidobacteria cultured on oligosaccharides and other simple carbohydrate sources. J. Appl. Microbiol. Vol. 85: 381-386.

Perrin, S., M. Warchol, J.P. Grill and F. Schneider 2001. Fermentations of fructo-oligosaccharides and their components by Bifidobacterium infantis ATCC 15697 on batch culture in semi-synthetic medium. J. Appl. Microbiol. Vol. 90: 859-865.

Van der Meulen, R., L. Avonts and L. De Vuyst 2004. Short fractions of oligofructose are preferentially metabolized by Bifidobacterium animalis DN-173 010. Appl. Environ. Microbiol. Vol. 70 No. 4: 1923-1930.

Perrin, S., et al, Op. cit.

Van der Meulen, R., et al, Op. cit.

Schell, M.A., et al, Op. cit.

Ballongue, J. Op cit.

Wolin, M.J., Y. Zang, S. Bank, S. Yerry and T.L. Miller 1998. NMR detection of 13CH3 13COOH from 3-13Cglucose: a signature for Bifidobacterium fermentation in the intestinal tract. J. Nutr. Vol. 128: 91-96.

Ballongue, J. Op cit.

Idem

Van der Meulen, R., et al, Op. cit.

Slováková, L., et al, Op. cit.

Perrin, S., et al, Op. cit.

Crociani, F., A. Alessandrini, M.M. Mucci and B. Biavati 1994. Degradation of complex carbohydrates byBifidobacterium spp. Int. J. Food. Microbiol. Vol. 24: 199-210.

Rohr, L.M., M. Teuber and L. Meile 2002. Phosphoketolase, a neglected enzyme of microbial carbohydrate metabolism. Chimia. Vol. 56: 270-273.

Scardovi, V., B. Sgorbati and G. Zani 1971. Starch gel electrophoresis of fructose-6-phosphate phosphoketolase in the genus Bifidobacterium. J. Bacteriol. Vol. 106 No. 3: 1036-1039.

Sgorbati, B., G. Lenaz and F. Casalicchio 1976. Purification and properties of two fructose-6-phosphate phosphoketolases in Bifidobacterium. Antonie Van Leeuwenhoek. Vol. 42: 49-57.

Yin, X.H., J.R. Chambers, K. Barlow, A.S. Park and R. Wheatcroft 2005. The gene encoding xylulose-5- phosphate/fructose-6-phosphate phosphoketolase (xfp) is conserved among Bifidobacterium species within a more variable region of the genome and both are useful for strain identification. FEMS Microbiol. Lett. Vol. 246

No. 2: 251-257.

Meile, L., L.M. Rohr, T.A. Geissman, M. Herensperger and M. Teuber 2001 Characterization of the D-xylulose 5-phosphate/D-fructose 6-phosphate phosphoketolase gene (xfp) from Bifidobacterium lactis. J. Bacteriol. Vol. 183 No. 9: 2929-2963.

Fandi, K.G., H.M. Ghazali, A.M. Yazid an A. R. Raha 2001 Purification and N-terminal amino acid sequence of fructose-6-phosphate phosphoketolase from Bifidobacterium longum BB536. Lett Appl Microbiol. Vol. 32 No. 4: 235-239.

Sgorbati, B., et al, Op. cit.

Descargas

Publicado

2006-12-31

Cómo citar

Bolado Martínez, E., & Acedo Félix, E. (2006). SUGAR CATABOLISM IN BIFIDOBACTERIA. RESPYN Revista Salud Pública Y Nutrición, 7(4). Recuperado a partir de https://respyn.uanl.mx/index.php/respyn/article/view/180

Número

Sección

Artículo Original