

Biotransformación del resveratrol y afinidad por COX-2: análisis *in silico* del potencial antiinflamatorio.

Biotransformation of resveratrol and its affinity for COX-2: an in silico analysis of its anti-inflammatory potential.

Niño-Sánchez Alejandra*, Medellín-Guerrero Alpha Berenice*, Solís-Pérez Elizabeth*, López-Cabanillas Lomelí Manuel*, Méndez-López Luis Fernando*.

*Universidad Autónoma de Nuevo León, Facultad de Salud Pública y Nutrición, Centro de Investigación de Salud Pública y Nutrición, México.

RESUMEN

La inflamación crónica está implicada en diversas enfermedades degenerativas y se asocia con la Introducción: sobreexpresión de la ciclooxigenasa-2 (COX-2), una enzima clave en la respuesta inflamatoria. El resveratrol, un compuesto fenólico presente en uvas, bayas y cacahuates, ha demostrado propiedades antiinflamatorias, atribuibles en parte a su interacción con COX-2. Objetivo: Evaluar, mediante herramientas in silico, la biotransformación del resveratrol mediada por la microbiota intestinal y el posible efecto antiinflamatorio de sus metabolitos sobre COX-2. Material y Método: Se utilizó la plataforma BioTransformer para predecir los cambios estructurales del resveratrol inducidos por enzimas de la microbiota intestinal. Los metabolitos resultantes, estilbendiol y estilbenol, fueron analizados en cuanto a sus propiedades farmacocinéticas y posibles blancos moleculares mediante SwissADME y SwissTargetPrediction. Posteriormente, su afinidad por COX-2 se evaluó mediante acoplamiento molecular con AutoDock. Resultados: Los análisis computacionales indicaron que las deshidroxilasas bacterianas generan dos derivados del resveratrol: el 3,4'-dihidroxi-trans-estilbeno y el trans-4hidroxiestilbeno. Ambos compuestos comparten a COX-2 como blanco molecular potencial (probabilidad = 0.4) y mantienen propiedades farmacocinéticas favorables (LogP ≥ 2). Sin embargo, el estilbenol mostró una mayor afinidad por el sitio activo de COX-2 en los estudios de acoplamiento molecular (-7.09 kcal/mol). Conclusión: La microbiota intestinal podría potenciar la actividad antiinflamatoria del resveratrol a través de su conversión en metabolitos más activos, como el trans-4hidroxiestilbeno. Hasta donde tenemos conocimiento, este es el primer estudio que identifica al estilbenol como un posible

Palabras Clave: Resveratrol, Inflamación, Polifenoles, Microbiota gastrointestinal, Biología computacional.

ABSTRACT

Introduction: Chronic inflammation is implicated in the pathogenesis of various degenerative diseases and is closely associated with the overexpression of cyclooxygenase-2 (COX-2), a key enzyme in the inflammatory response. Resveratrol, a phenolic compound found in grapes, berries, and peanuts, has demonstrated anti-inflammatory properties, partly attributed to its interaction with COX-2. **Objective:** To evaluate, using in silico tools, the gut microbiota-mediated biotransformation of resveratrol and the potential anti-inflammatory effects of its metabolites on COX-2. **Material and method:** The BioTransformer platform was used to predict structural modifications of resveratrol induced by microbial enzymes. The resulting metabolites, stilbendiol and stilbenol, were analyzed for their pharmacokinetic properties and potential molecular targets using SwissADME and SwissTargetPrediction. Their binding affinity to COX-2 was subsequently evaluated through molecular docking with AutoDock. **Results:** Computational analyses indicated that bacterial dehydroxylases generate two resveratrol derivatives: 3,4'-dihydroxy-trans-stilbene and trans-4-hydroxystilbene. Both compounds were predicted to target COX-2 (probability \geq 0.4) and displayed favorable pharmacokinetic properties (LogP \geq 2). However, molecular docking suggested that stilbenol has a stronger binding affinity to the COX-2 active site (-7.09 kcal/mol). **Conclusion:** Gut microbiota may enhance the anti-inflammatory efficacy of resveratrol through its biotransformation into more active metabolites, such as trans-4-hydroxystilbene. To the best of our knowledge, this is the first study to identify stilbenol as a potential COX-2 inhibitor.

Keywords: Resveratrol, Inflammation, Polyphenols, Gastrointestinal Microbiota, Computational Biology.

Correspondencia: Luis Fernando Méndez López <u>luis.mendezlop@uanl.edu.mx</u> Recibido: 22 de mayo 2025, aceptado: 25 de agosto 2025

©Autor2025

Citation: Niño-Sánchez A., Medellín-Guerrero A.B., Solís-Pérez E., López-Cabanillas Lomelí M., Méndez-López L.F. (2025) Biotransformación del resveratrol y afinidad por COX-2: análisis *in silico* del potencial antiinflamatorio. *Revista Salud Pública y Nutrición, 24* (3), 18-26. https://doi.org/10.29105/respyn24.3-885

Significancia

Este estudio destaca la relevancia de la microbiota intestinal en la biotransformación del resveratrol, un compuesto bioactivo con propiedades Mediante herramientas antiinflamatorias. bioinformáticas, se identificaron metabolitos como el estilbendiol y estilbenol, los cuales conservan afinidad hacia la enzima COX-2, sugiriendo una posible actividad antiinflamatoria. Estos hallazgos contribuven a comprender cómo las modificaciones estructurales inducidas por la microbiota pueden influir en la eficacia terapéutica de compuestos fenólicos, ofreciendo perspectivas innovadoras para desarrollo de estrategias nutracéuticas personalizadas en el manejo de procesos inflamatorios.

Introducción

La inflamación es un proceso evolutivo fundamental que implica la activación, el reclutamiento y la acción coordinada de las células del sistema inmunitario como mecanismo de defensa frente a patógenos (Medzhitov, 2008). Además de su función protectora, desempeña un papel esencial en la reparación, regeneración y remodelación de tejidos. Sin embargo, cuando este proceso no se resuelve de manera adecuada, puede derivar en una inflamación crónica de bajo grado, la cual se ha asociado causalmente con enfermedades no transmisibles como la diabetes tipo 2, las enfermedades cardiovasculares y el cáncer (Greten & Grivennikov, 2019; Medzhitov, 2008). Una de las enzimas clave en este proceso es la ciclooxigenasa-2 (COX-2), una isoforma inducible que se expresa en respuesta a diversos estímulos inflamatorios (Martínez-Canabal & Rivas-Arancibia, 2005). Esta enzima cataliza la conversión del ácido araquidónico prostaglandinas, moléculas de señalización que regulan el proceso inflamatorio actuando como mensajeros autocrinos y paracrinos (García Meijide & Gómez-Reino Carnota, 2000; Martínez-Canabal & Rivas-Arancibia, 2005). Numerosos estudios han demostrado que una dieta rica en alimentos de origen vegetal puede modular la inflamación crónica, en parte gracias a su alto contenido de compuestos fenólicos con propiedades antiinflamatorias (Kurowska et al., 2023; Méndez López et al., 2024). Entre estos, el resveratrol —un polifenol del tipo estilbeno presente principalmente en uvas, bayas, cacahuates y frijoles— ha sido ampliamente estudiado (Xu et al., 2024). Se estima que la ingesta

diaria de resveratrol varía entre 1 y 100 mg, siendo las frutas su principal fuente dietética (Xu et al., 2024). Una de las vías mediante las cuales ejerce su efecto antiinflamatorio es a través de su unión directa a la enzima COX-2, inhibiendo así la producción de prostaglandinas (Desai et al., 2018; Ko et al., 2017; Malaguarnera, 2019: Pannu & Bhatnagar, 2019). Recientemente, se ha reportado que los compuestos fenólicos pueden ser biotransformados por enzimas de la microbiota intestinal, generando metabolitos con mayor actividad biológica (Li et al., 2014; Murota et al., 2018; Springer & Moco, 2019). No obstante, el destino metabólico del resveratrol y los efectos de sus metabolitos sobre la COX-2 no han sido suficientemente explorados. Las herramientas bioinformáticas permiten predecir de manera eficiente las biotransformaciones mediadas por la microbiota, así como evaluar propiedades farmacocinéticas y la afinidad de moléculas con proteínas blanco-relevantes procesos en fisiopatológicos (Anupama et al., 2022; Gupta & Rani, 2011). En esta investigación, se analizó el metabolismo del resveratrol utilizando el software BioTransformer, que predice cambios estructurales inducidos por la microbiota intestinal. Además, se emplearon plataformas del Swiss Institute of Bioinformatics (SIB), incluyendo SwissADME y SwissTarget Prediction, para calcular propiedades de absorción, distribución, metabolismo y excreción (ADME), así como las posibles dianas moleculares (Daina et al., 2017; Daina et al., 2019; Wishart et al., 2022). Para evaluar los cambios en la afinidad del resveratrol v sus metabolitos hacia la COX-2, se llevó a cabo un análisis de acoplamiento molecular (molecular docking), el cual permite estimar la energía de interacción y la capacidad de unión de los ligandos en el sitio activo de una proteína (Prieto-Martínez et al., 2018). Aunque estas técnicas han sido tradicionalmente utilizadas en el descubrimiento de fármacos, su aplicación en el estudio del potencial terapéutico de nutrientes es cada vez más frecuente (Méndez-López et al., 2022; Singh et al., 2019). En este artículo se reporta que la microbiota intestinal podría potenciar las propiedades antiinflamatorias del resveratrol mediante su conversión a estilbenol. un metabolito que mostró mejores propiedades farmacocinéticas y una mayor afinidad por la enzima COX-2.

Material y método

La estructura química del resveratrol fue obtenida

mediante su notación SMILES (Simplified Molecular Input Line Entry System) a través de la de PubChem base datos (https://pubchem.ncbi.nlm.nih.gov). Esta codificación lineal permite representar estructuras químicas de forma compatible con software de análisis molecular. La predicción de biotransformación intestinal se llevó a cabo utilizando la plataforma BioTransformer 3.0 (https://biotransformer.ca), donde se ingresó la notación SMILES en la sección Metabolism Prediction. Se seleccionó la opción Human and Gut Microbial Transformation (SuperBio), la cual predice modificaciones estructurales derivadas tanto del metabolismo hepático como de la actividad enzimática de la microbiota intestinal humana (Djoumbou-Feunang et al., 2019). Los SMILES del resveratrol y de sus metabolitos derivados se introdujeron en SwissTargetPrediction

(http://www.swisstargetprediction.ch) con el fin de predecir posibles blancos moleculares relacionados con la inflamación. Esta herramienta utiliza un enfoque basado en similitud molecular y proporciona una puntuación predictiva; valores superiores a 0.5 se interpretan como alta afinidad por el blanco molecular (Daina et al., 2019). Las propiedades farmacocinéticas de absorción, distribución, metabolismo y excreción (ADME) fueron determinadas mediante la herramienta SwissADME (http://www.swissadme.ch), a partir de la misma notación SMILES de cada compuesto (Daina et al., 2017). Para que un compuesto sea considerado con potencial farmacológico por vía oral, debe cumplir con los cinco criterios establecidos por Lipinski. Estos incluyen: un peso molecular igual o inferior a 500 g/mol, un máximo de 10 aceptores de enlaces de hidrógeno, no más de 5 donadores de enlaces de hidrógeno, un valor de LogP menor a 5 y un número de enlaces rotables inferior a 10 (Lipinski et al., 1997). Para evaluar la afinidad de unión entre los compuestos y la enzima COX-2, se realizó un análisis de acoplamiento molecular. La estructura tridimensional de la enzima COX-2 (organismo: Homo sapiens, resolución < 3 Å) fue descargada desde el Protein Data Bank (PDB), utilizando el código de entrada 5IKV. A esta estructura se le eliminaron moléculas de agua y ligandos cocristalizados.

Las estructuras tridimensionales de los metabolitos predichos se generaron con el programa Avogadro, aplicando el campo de fuerza MMFF94 y el algoritmo de descenso más pronunciado para la optimización geométrica. Los archivos resultantes se exportaron en formato .mol2. Las simulaciones de acoplamiento se realizaron en AutoDock Tools. Las proteínas fueron preparadas añadiendo hidrógenos polares y cargas de Kollman, mientras que los ligandos recibieron hidrógenos polares y cargas de Gasteiger. La selección del sitio activo se basó en información obtenida de UniProt y de las predicciones generadas con DoGSiteScorer. Las coordenadas 3D específicas utilizadas en el acoplamiento se describen en la Tabla 1. Durante el procedimiento de acoplamiento, las proteínas fueron consideradas como estructuras rígidas, mientras que los ligandos permanecieron flexibles. Se generaron mapas de afinidad con un espaciado de malla de 0.375 Å, v se registraron los valores de energía de unión predicha para cada simulación.

Tabla 1. Coordenadas tridimensionales del sitio activo de COX-2 empleadas en los estudios de acoplamiento molecular.

	Blanco	cı	mañ uadro plam			Coordenadas del cuadro de acoplamiento			
	COX-2	X	Y	Z	X	Y	Z		
		46	46	40	161.817	188.02	194.45		

El análisis de las interacciones moleculares, orientaciones y conformaciones de los ligandos en el sitio activo de la enzima COX-2, tras las simulaciones de acoplamiento molecular, se realizó utilizando el software ChimeraX v1.2.5. Se enfocó particularmente en las conformaciones con las energías de unión más bajas, consideradas como las más estables y biológicamente relevantes. Las interacciones no covalentes, especialmente los puentes de hidrógeno fueron identificados mediante la herramienta H-bonds del menú Structure Analysis, empleando los siguientes parámetros: radio de detección de 0.075 Å, tolerancia de distancia de 0.4 Å, y tolerancia angular de 20°. Como control positivo, se utilizó el resveratrol, dado su reconocimiento previo como ligando de la enzima COX-2 (Du et al., 2016). De manera complementaria, se consideraron como ligandos de alta afinidad aquellos compuestos cuya energía de

unión resultó ser menor a -4.00 kcal/mol (Méndez-López et al., 2022).

Resultados

La predicción metabólica del resveratrol mediante la plataforma *BioTransformer* 3.0 sugiere que este compuesto puede ser transformado por la acción de deshidroxilasas bacterianas (no especificadas). En particular, la eliminación del grupo hidroxilo en la posición 5 da lugar a la formación de estilbendiol (3,4'-dihidroxi-trans-estilbeno), el cual puede sufrir una deshidroxilación adicional en la posición 3 para generar estilbenol (trans-4-hidroxiestilbeno) (Figura 1).

proinflamatorias.

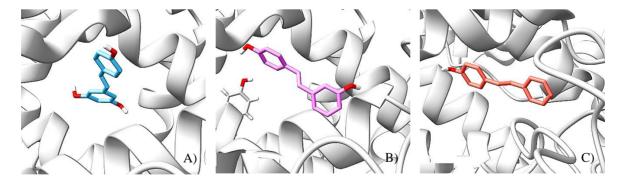
Las propiedades fisicoquímicas y farmacocinéticas predichas por la plataforma *SwissADME*, indican que los compuestos obtenidos presentan cualidades farmacológicas favorables, es decir, para que sean consideraros activos vía oral (Lipinski et al., 1997). Se puede observar que, tanto el resveratrol como el estilbendiol y estilbenol cumplirían con los criterios (Tabla 3).

Los resultados del acoplamiento molecular indican que tanto el resveratrol como sus metabolitos poseen afinidad por el sitio activo de la enzima COX-2.

Figura 1. Predicción metabólica del resveratrol por BioTransformer 3.0

Estos derivados del resveratrol, de acuerdo con la predicción de la plataforma *SwissTargetPrediction*, se seleccionaron por su mayor afinidad y probable modulación de las enzimas ciclooxigenasas, similar al compuesto primario (Tabla 2). Cabe mencionar que, aunque la isoforma de la COX-1 comparte las mismas funciones, esta se expresa constitutivamente y no se considera asociada a procesos inflamatorios crónicos. Los resultados sugieren que cada uno de los compuestos podría interactuar con más de 20 dianas terapéuticas (resultados no mostrados), no obstante, solo la enzima ciclooxigenasa se reporta como proteína relacionada con actividades

El resveratrol presentó una energía de unión de -5.09 kcal/mol, mientras que el estilbendiol y el estilbenol mostraron valores de -6.05 y -7.09 kcal/mol, respectivamente. Estos datos sugieren que la biotransformación del resveratrol por la microbiota mejora su afinidad hacia la enzima COX-2, particularmente en el caso del estilbenol. Todos los compuestos evaluados superaron el umbral de buena afinidad establecido en -4.00 kcal/mol (Figura 2).


Tabla 2. Blancos moleculares del resveratrol obtenidos de SwissTargetPrediction

Compuesto	Blanco molecular	UniProt ID	Clase	Probabilidad
Dagramatus1	Ciclooxigenasa-1	P23219	Oxidorreductasa	1
Resveratrol	Ciclooxigenasa-2	P35354	Oxidorreductasa	1
Estilbendiol	Ciclooxigenasa-1	P23219	Oxidorreductasa	0.4
Estilibelialoi	Ciclooxigenasa-2	P35354	Oxidorreductasa	0.4
Estilbenol	Ciclooxigenasa-1	P23219	Oxidorreductasa	0.1
Estillellol	Ciclooxigenasa-2	P35354	Oxidorreductasa	0.1

Tabla 3. Estimación de propiedades fisicoquímicas y farmacocinéticas del resveratrol y sus derivados metabólicos

Compuesto	PM (g/mol)	# Enlaces rotables	# Receptores de enlaces H	# Donadores de enlaces H	iLOGP	Absorción GI	BHE	Inhibición de enzimas CYP
								CYP1A2,
								CYP2C9,
Resveratrol	228.24	2	3	3	1.71	Alta	Sí	CYP3A4
								CYP1A2,
Estilbendiol	212.24	2	2	2	2.01	Alta	Sí	CYP2C9
								CYP1A2,
								CYP2C9,
Estilbenol	196.24	2	1	1	2.33	Alta	Sí	CYP2C19

Figura 2. Modelo de unión *in silico* de los compuestos A) resveratrol, B) estilbendiol y C) estilbendo en el sitio activo de la enzima COX-2. De acuerdo con el cálculo de su energía de afinidad, cuando el resveratrol es biotransformado por la microbiota, los derivados mejoran su capacidad de unión.

Discusión

Las dietas ricas en compuestos bioactivos representan una alternativa natural prometedora para la modulación de procesos inflamatorios (Attig et al., 2018; Malesza et al., 2021; Méndez López et al., 2024). En particular, el resveratrol ha sido ampliamente estudiado por su potencial antiinflamatorio, con evidencia sólida procedente de estudios in silico, in vitro, in vivo y ensayos clínicos (Abbas et al., 2023; Meng et al., 2020). En esta investigación, empleando herramientas bioinformáticas, se exploró el destino metabólico del resveratrol mediado por la microbiota intestinal, así como el posible impacto de sus transformaciones estructurales sobre su afinidad hacia la enzima COX-2, clave en la inflamación. Los resultados indicaron que el resveratrol podría ser biotransformado en estilbendiol y estilbenol, derivados de reacciones productos deshidroxilación. Estas predicciones se encuentran respaldadas por estudios in vivo, como el de Bode et al. (2013), donde se identificó al 3,4'-dihidroxitrans-estilbeno (estilbendiol) como uno de los metabolitos generados tras la ingesta de resveratrol en humanos sanos. En dicho estudio, se aislaron cepas de Slackia equolifaciens y Adlercreutzia equolifaciens, las cuales metabolizaron el resveratrol produciendo dihidroresveratrol como metabolito principal. Si bien se detectaron los metabolitos deshidroxilados, 3,4'-dihidroxi-transestilbeno y lunularina, no se lograron identificar las especies bacterianas responsables de esta transformación secundaria. En el caso del estilbenol, aunque su formación ha sido observada en estudios in vitro y en muestras de orina, actualmente no se considera un metabolito definitivo de la microbiota intestinal, dado que no se ha identificado aún la bacteria responsable de su generación mediante una segunda deshidroxilación del estilbendiol (Iglesias-Aguirre et al., 2022). Respecto a las propiedades fisicoquímicas y farmacocinéticas, los análisis mediante la plataforma SwissADME revelaron que el resveratrol y sus metabolitos cumplen con los criterios de la regla de Lipinski, lo que sugiere un buen perfil farmacológico. Todos los compuestos mostraron alta absorción gastrointestinal y atravesar capacidad de 1a barrera hematoencefálica, características que favorecen su biodisponibilidad sistémica. No obstante, estudios

previos han señalado que, a pesar de su buena (aproximadamente absorción 70%). biodisponibilidad del resveratrol es limitada (~1%) debido a su rápido metabolismo y eliminación (Walle et al., 2004). El análisis de predicción de moleculares blancos mediante SwissTargetPrediction | indicó aue tanto resveratrol como sus derivados podrían modular la actividad de las enzimas COX, hallazgo que fue consistente con los resultados del acoplamiento molecular, los cuales demostraron una buena afinidad hacia la COX-2. Cabe destacar que estudios in silico previos han documentado la afinidad del resveratrol y de varios de sus derivados semisintéticos por esta enzima, observando mediante acoplamiento molecular que ciertas modificaciones estructurales incrementan la energía de unión (-7.0 kcal/mol), lo que sugiere la capacidad de los compuestos de unirse de manera estable y potencialmente inhibidora a la enzima. En algunos casos, estas predicciones se han correlacionado con una mayor inhibición de la producción de prostaglandinas in vitro (Leláková et al., 2019). Particularmente, derivatizaciones como metilación e hidroxilación han demostrado inhibir la producción de prostaglandina E2 de manera más efectiva que el fármaco antiinflamatorio Celecoxib, cuyo mecanismo de acción se basa precisamente en la inhibición de la COX-2 (Murias et al., 2004). Aunque se han documentado interacciones de estilbendiol y estilbenol con otros blancos moleculares (González-Sarrías et al., 2022), hasta la fecha no se han reportado estudios experimentales que evalúen su interacción directa con la enzima COX-2. Una de las principales limitaciones de este estudio es la ausencia de validación experimental. Como señala Al-Mohaya et al. (2024), si bien las herramientas computacionales resultan útiles en las etapas iniciales de investigación de compuestos con potencial terapéutico, su precisión y aplicabilidad dependen en gran medida de la calidad y diversidad de los datos empleados, así como de su validación externa mediante metodologías científicas rigurosas. Los resultados obtenidos sugieren que los metabolitos propuestos podrían conservar, e incluso potenciar, la actividad antiinflamatoria del resveratrol. No obstante, será necesario desarrollar futuras investigaciones que incluyan evaluaciones funcionales in vitro e in vivo, con el fin de confirmar estos hallazgos y esclarecer sus mecanismos de acción.

Asimismo, debe considerarse que la composición de la microbiota intestinal varía significativamente entre individuos, influida por factores como la edad, el origen étnico, la ubicación geográfica, el estado de salud, la dieta, el uso de antibióticos, e incluso el tipo de parto. Esta variabilidad podría afectar la capacidad de biotransformación de compuestos fenólicos como el resveratrol (Makarewicz et al., 2021). En este sentido, los resultados presentados deben interpretarse como predicciones teóricas, cuyo impacto real puede diferir entre individuos, dependiendo de la presencia o ausencia de especies microbianas capaces de metabolizar el resveratrol.

Conclusión

Los resultados obtenidos en este estudio in silico sugieren que el resveratrol, un compuesto fenólico con propiedades antiinflamatorias reconocidas. puede ser biotransformado por la microbiota intestinal en los metabolitos estilbendiol v estilbenol. Estas transformaciones no solo conservan, sino que podrían mejorar su afinidad hacia la enzima COX-2, un blanco terapéutico relevante en enfermedades inflamatorias crónicas. Los análisis de acoplamiento molecular mostraron una mayor energía de unión para los metabolitos en comparación con el compuesto original, lo que indica un potencial inhibitorio superior. Asimismo, las predicciones farmacocinéticas evidenciaron características favorables para la absorción y biodistribución de estos metabolitos, cumpliendo con los principales criterios de viabilidad oral. Estos hallazgos respaldan la hipótesis de que las interacciones entre compuestos dietéticos y la microbiota intestinal pueden potenciar la actividad biológica de nutracéuticos como el resveratrol. Sin embargo, la composición de la microbiota significativamente entre individuos, lo que puede influir en la capacidad de biotransformación y, por ende, en la eficacia de estos compuestos. Además, aunque las herramientas in silico ofrecen una aproximación útil en etapas tempranas de investigación, es imprescindible validar estos resultados mediante estudios experimentales. En particular, la evaluación funcional de estilbendiol y estilbenol sobre la actividad de COX-2 en modelos in vitro e in vivo representa una línea

prometedora para el desarrollo de nuevos agentes antiinflamatorios de origen natural.

Contribución de los autores

Conceptualización, L.F.M.L.; investigación, A.N.S. y L.F.M.L.; curación de datos, A.B.M.G y L.F.M.L.; redacción (preparación del borrador original), A.N.S. y L.F.M.L.; redacción (revisión y edición), A.B.M.G. y L.F.M.L.; supervisión, E.S.P. y M.L.-C.L.; administración del proyecto, E.S.P. y M.L.-C.L.; obtención de fondos, E.S.P. y M.L.-C.L. Todos los autores han leído y aceptado la versión publicada del manuscrito.

Financiamiento

La presente investigación no recibió financiación específica por parte de agencias del sector público, empresas del sector privado ni de organizaciones sin fines de lucro.

Agradecimientos

Los autores expresan su agradecimiento a la Secretaría de Ciencias, Humanidades, Tecnología e Innovación (SECIHTI), así como a la Facultad de Salud Pública y Nutrición de la Universidad Autónoma de Nuevo León, por el apoyo brindado para la realización de esta investigación.

Conflicto de intereses

Los autores declaran no tener conflicto de intereses.

Bibliografía

- Abbas, S. R., Khan, R. T., Shafique, S., Mumtaz, S., Khan, A. A., Khan, A. M., Hassan, Z., Hussain, S. A., Abbas, S., Abbas, M. R., Batool, A., & Safder, M. A. (2023). Study of resveratrol against bone loss by using in-silico and in-vitro methods. *Brazilian Journal of Biology*, 83. https://doi.org/10.1590/1519-6984.248024
- Al-Mohaya, M., Mesut, B., Kurt, A., & Çelik, Y. S. (2024). In silico approaches which are used in pharmacy. *Journal of Applied Pharmaceutical Science*. https://doi.org/10.7324/JAPS.2024.154854
- Anupama, K. P., Antony, A., Shilpa, O., & Gurushankara, H. P. (2022). In Silico Techniques: Powerful Tool for the Development of Therapeutics. In Functional Foods and Therapeutic Strategies for Neurodegenerative Disorders (pp. 177–202). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-6703-9_11

- Attiq, A., Jalil, J., Husain, K., & Ahmad, W. (2018). Raging the war against inflammation with natural products. *Frontiers in Pharmacology*, 9(976).
 - https://doi.org/10.3389/fphar.2018.00976
- Bode, L. M., Bunzel, D., Huch, M., Cho, G.-S., Ruhland, D., Bunzel, M., Bub, A., Franz, C. M., & Kulling, S. E. (2013). In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. *The American Journal of Clinical Nutrition*, 97(2), 295–309.
 - https://doi.org/10.3945/ajcn.112.049379
- Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. *Scientific Reports*, 7(1), 42717.
 - https://doi.org/10.1038/srep42717
- Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. *Nucleic Acids Research*, 47(W1), W357–W364.
 - https://doi.org/10.1093/nar/gkz382
- Desai, S. J., Prickril, B., & Rasooly, A. (2018). Mechanisms of Phytonutrient Modulation of Cyclooxygenase-2 (COX-2) and Inflammation Related to Cancer. *Nutrition and Cancer*, 70(3), 350–375.
 - https://doi.org/10.1080/01635581.2018.144609
- Djoumbou-Feunang, Y., Fiamoncini, J., Gil-de-la-Fuente, A., Greiner, R., Manach, C., & Wishart, D. S. (2019). BioTransformer: a comprehensive computational tool for small molecule metabolism prediction and metabolite identification. *Journal of Cheminformatics*, 11(1), 2. https://doi.org/10.1186/s13321-018-0324-5
- Du, X., Li, Y., Xia, Y.-L., Ai, S.-M., Liang, J., Sang, P., Ji, X.-L., & Liu, S.-Q. (2016). Insights into protein–ligand interactions: mechanisms, models, and methods. *International Journal of Molecular Sciences*, 17(2), 144. https://doi.org/10.3390/ijms17020144
- García Meijide, J. A., & Gómez-Reino Carnota, J. J. (2000). Fisiopatología de la ciclooxigenasa-1 y ciclooxigenasa-2. Revista Española de Reumatología, 27(1).
 - https://www.elsevier.es/es-revista-revista-espanola-reumatologia-29-articulo-
 - fisiopatologia-ciclooxigenasa-1-ciclooxigenasa-2-8546
- González-Sarrías, A., Espín-Aguilar, J. C., Romero-Reyes, S., Puigcerver, J., Alajarín, M., Berná, J., Selma, M. V., & Espín, J. C. (2022). Main Determinants Affecting the Antiproliferative

- Activity of Stilbenes and Their Gut Microbiota Metabolites in Colon Cancer Cells: A Structure—Activity Relationship Study. *International Journal of Molecular Sciences*, 23(23), 15102. https://doi.org/10.3390/ijms232315102
- Greten, F. R., & Grivennikov, S. I. (2019). Inflammation and cancer: triggers, mechanisms, and consequences. *Immunity*, 51(1), 27–41. https://doi.org/10.1016/j.immuni.2019.06.025
- Gupta, O., & Rani, S. (2011). Bioinformatics Applications and Tools: An Overview. *CiiT International Journal of Biometrics and Bioinformatics*, 3(3), 107–110.
- Iglesias-Aguirre, C. E., Vallejo, F., Beltrán, D., Berná, J., Puigcerver, J., Alajarín, M., Selma, M. V., & Espín, J. C. (2022). 4-Hydroxydibenzyl: a novel metabolite from the human gut microbiota after consuming resveratrol. *Food & Function*, 13(14), 7487–7493.
 - https://doi.org/10.1039/D2FO01475K
- Ko, J.-H., Sethi, G., Um, J.-Y., Shanmugam, M. K., Arfuso, F., Kumar, A. P., Bishayee, A., & Ahn, K. S. (2017). The role of resveratrol in cancer therapy. *International Journal of Molecular Sciences*, 18(12), 2589. https://doi.org/10.3390/ijms18122589
- Kurowska, A., Ziemichód, W., Herbet, M., & Piątkowska-Chmiel, I. (2023). The Role of Diet as a Modulator of the Inflammatory Process in the Neurological Diseases. *Nutrients*, *15*(6), 1436. https://doi.org/10.3390/nu15061436
- Leláková, V., Šmejkal, K., Jakubczyk, K., Veselý, O., Landa, P., Václavík, J., Bobáľ, P., Pížová, H., Temml, V., Steinacher, T., Schuster, D., Granica, S., Hanáková, Z., & Hošek, J. (2019). Parallel in vitro and in silico investigations into anti-inflammatory effects of non-prenylated stilbenoids. *Food Chemistry*, 285, 431–440. https://doi.org/10.1016/j.foodchem.2019.01.128
- Li, B., Xiong, M., & Zhang, H.-Y. (2014). Elucidating Polypharmacological Mechanisms of Polyphenols by Gene Module Profile Analysis. *International Journal of Molecular Sciences*, 15(7), 11245–11254. https://doi.org/10.3390/ijms150711245
- Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. *Advanced Drug Delivery Reviews*, 23(1–3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-
- Makarewicz, M., Drożdż, I., Tarko, T., & Duda-Chodak, A. (2021). The interactions between polyphenols and microorganisms, especially gut

- microbiota. *Antioxidants*, 10(2), 188. https://doi.org/10.3390/antiox10020188
- Malaguarnera, L. (2019). Influence of Resveratrol on the Immune Response. *Nutrients*, *11*(5), 946. https://doi.org/10.3390/nu11050946
- Malesza, I. J., Malesza, M., Walkowiak, J., Mussin, N., Walkowiak, D., Aringazina, R., Bartkowiak-Wieczorek, J., & Mądry, E. (2021). High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. *Cells*, 10(11), 3164.
 - https://doi.org/10.3390/cells10113164
- Martínez-Canabal, A., & Rivas-Arancibia, S. (2005). Funciones de las prostaglandinas en el sistema nervioso central. *Revista de La Facultad de Medicina*, 48(5), 210–216.
 - https://www.medigraphic.com/pdfs/facmed/un-2005/un055i.pdf
- Medzhitov, R. (2008). Origin and physiological roles of inflammation. *Nature*, 454(7203), 428–435. https://doi.org/10.1038/nature07201
- Méndez López, L. F., González Llerena, J. L., Vázquez Rodríguez, J. A., Medellín Guerrero, A. B., González Martínez, B. E., Solís Pérez, E., & López-Cabanillas Lomelí, M. (2024). Dietary Modulation of the Immune System. *Nutrients*, 16(24), 4363.
 - https://doi.org/10.3390/nu16244363
- Méndez-López, L. F., Sosa de León, D., López-Cabanillas Lomelí, M., González-Martínez, B. E., & Vázquez-Rodríguez, J. A. (2022). Phytochemicals from Vicia faba beans as ligands of the aryl hydrocarbon receptor to regulate autoimmune diseases. *Frontiers in Nutrition*, 9. https://doi.org/10.3389/fnut.2022.790440
- Meng, X., Zhou, J., Zhao, C.-N., Gan, R.-Y., & Li, H.-B. (2020). Health Benefits and Molecular Mechanisms of Resveratrol: A Narrative Review. *Foods*, *9*(3), 340. https://doi.org/10.3390/foods9030340
- Murias, M., Handler, N., Erker, T., Pleban, K., Ecker, G., Saiko, P., Szekeres, T., & Jäger, W. (2004). Resveratrol analogues as selective cyclooxygenase-2 inhibitors: synthesis and structure–activity relationship. *Bioorganic & Medicinal Chemistry*, 12(21), 5571–5578. https://doi.org/10.1016/j.bmc.2004.08.008
- Murota, K., Nakamura, Y., & Uehara, M. (2018). Flavonoid metabolism: the interaction of metabolites and gut microbiota. *Bioscience*, *Biotechnology*, and *Biochemistry*, 82(4), 600– 610.
 - https://doi.org/10.1080/09168451.2018.144446
- Pannu, N., & Bhatnagar, A. (2019). Resveratrol: from enhanced biosynthesis and bioavailability to multitargeting chronic diseases. *Biomedicine*

- & *Pharmacotherapy*, 109, 2237–2251. https://doi.org/10.1016/j.biopha.2018.11.075
- Prieto-Martínez, F. D., Arciniega, M., & Medina-Franco, J. L. (2018). Acoplamiento Molecular: Avances Recientes y Retos. *TIP Revista Especializada En Ciencias Químico-Biológicas*, 21.
 - https://doi.org/10.22201/fesz.23958723e.2018.0 .143
- Singh, A., Zahra, S., & Kumar, S. (2019). In-silico Tools in Phytochemical Research. In Phytochemistry: An in-silico and in-vitro Update (pp. 351–372). Springer Singapore. https://doi.org/10.1007/978-981-13-6920-9_19
- Springer, M., & Moco, S. (2019). Resveratrol and its human metabolites—effects on metabolic health and obesity. *Nutrients*, *11*(1), 143. https://doi.org/10.3390/nu11010143
- Walle, T., Hsieh, F., DeLegge, M. H., Oatis, J. E., & Walle, U. K. (2004). High Absorption but Very Low Bioavailability of Oral Resveratrol in Humans. *Drug Metabolism and Disposition*, 32(12), 1377–1382.
 - https://doi.org/10.1124/dmd.104.000885
- Wishart, D. S., Tian, S., Allen, D., Oler, E., Peters, H., Lui, V. W., Gautam, V., Djoumbou-Feunang, Y., Greiner, R., & Metz, T. O. (2022). BioTransformer 3.0—a web server for accurately predicting metabolic transformation products. *Nucleic Acids Research*, 50(W1), W115–W123. https://doi.org/10.1093/nar/0
- Xu, Y., Fang, M., Li, X., Wang, D., Yu, L., Ma, F., Jiang, J., Zhang, L., & Li, P. (2024). Contributions of Common Foods to Resveratrol Intake in the Chinese Diet. *Foods*, *13*(8), 1267. https://doi.org/10.3390/foods13081267