TUBERCULOSIS: MECANISMOS DE DEFENSA, INMUNOPATOGENESIS Y BIOMARCADORES.

Authors

  • Adrián G. Rosas Taraco Departamento de Inmunologia, Facultad de Medicina, Universidad Autónoma de Nuevo León (Monterrey, N.L.,México) Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University. (Colorado, United States)
  • Alma Yolanda Arce Mendoza Departamento de Inmunologia, Facultad de Medicina, Universidad Autónoma de Nuevo León (Monterrey, N.L., México)

Abstract

La tuberculosis es una enfermedad infecto-contagiosa de problema de salud mundial. Los mecanismos de defensa del huésped se encuentran principalmente en las vías respiratorias altas y bajas con sus componentes con la lisozima, lactoferrina, defensinas, catelicidinas y las proteínas sufactantes que juegan un papel importante en el control de la infección. La interacción de Mycobacterium tuberculosis con receptores que reconocen patrones moleculares favorecen la internalización de la micobacteria y la producción de citocinas. Las citocinas proinflamatorias, como IL-1, TNF-a, IL-12 e IL-8 son importantes en etapas tempranas de la infección. Citocinas como la IL-12 y las de origen de células CD4 Th1, como IFN-g, son importantes en la activación de linfocitos CD4 y del mismo macrófago. La regulación del proceso inflamatorio por citocinas como IL-10 y TGFb es importante para la sobrevivencia del hospedero, pero esta debe darse en un balance para evitar la supresión del sistema inmune contra Mycobacterium tuberculosis. La búsqueda de biomarcadores de susceptibilidad y resistencia ha sido amplia en la tuberculosis pulmonar, pero principalmente enfocados a moléculas del complejo mayor de histocompatibilidad. Otros genes asociados con la susceptibilidad a desarrollar tuberculosis son NRAMP, receptor de vitamina D y receptor IFN-g.


Palabras clave: Tuberculosis, citocinas, respuesta inmune celular, biomarcadores.

Tuberculosis, cytokines, cellular immune response, biomarkers.

Downloads

Download data is not yet available.

References

Raviglione, MC, DE Snider and A. Kochi 1995. Global Epidemiology of Tuberculosis. JAMA. 273(3): 220-226.

Guevara, A, A. Juárez, y R. Zenteno 2003. Tuberculosis y la importancia de incorporar nuevas tecnologías diagnósticas. MEDUNAB. 6(16): 46–51.

Schluger, NW and WN Rom 1998. The Host Immune Response to Tuberculosis. Am J Respir Crit Care Med. 157:679-691.

Guevara, A, et al., Op.cit.

Lennette, EH, A. Balows, WJ Hasuler and JP Truant 1983. Microbiología Clínica 3 ed. México: Editorial Interamericana.

Comstock, GW. 1982. Epidemiology of tuberculosis. Am Rev Respir Dis. 25(3 Pt 2):8-15.

Idem.

Ferguson, JS and LS Schlesinger 2000. Pulmonary surfactant in innate immunity and the pathogenesis of tuberculosis. Tuber Lung Dis. 80: 173-184.

Arnold, RR, JE Rusell, WJ Champion, M Brewer and JJ Gauthier 1982. Bactericidal activity of human lactoferrin: differentiation from the stasis of iron deprivation Infect Immun. 35:792-799.

Ganz, T. 2002. Antimicrobial polypeptides in host defense of the respiratory tract. J Clin Invest. 109:693-697.

Lehrer, RI and T. Ganz 2002. Defensins of vertebrate animals. Curr Opin Immunol. 14:96-102.

McCormack, FX and JA Whitsett 2002. The pulmonary col.lectins, SP-a and SP-D, orchestrate innate immunity in the lung J Clin Invest. 109:707-712.

Beharka, AA, CD Gaynor, BK Kang, DR Voelker, FX McCormack and LS Schlesinger 2002. Pulmonary surfactant protein a up-regulates activity of the mannose receptor, a pattern recognition receptor expressed on human macrophages. J Immunol. 169:3565-3573.

Weikert, LF, JP Lopez, R Abdolrasulnia, ZC Chroneos, and VL Sheperd 2000. Surfactant protein A enhances mycobacterial killing by rat macrophages through a nitric oxide-dependent pathway. Am J Physiol Lung Cell Mol Physiol. 279:L216-L223.

Ansel, KM, RB Harris and JG Cyster 2002. CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity. Immunity. 16:67-76.

Schlesinger, LS. 1998. Mycobacterium tuberculosis and the complement system. Trends Microbiol. 6:47-49.

Ernst, JD. 1998. MINIREVIEW: Macrophage Receptors for Mycobacterium tuberculosis. Infect. Immunit. 66 (4): 1277 – 1281.

Tailleux L, O Schwartz and JL Herrmann 2003. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med. 197:121-127.

Schorey, JS, MC Carroll and EJ. Brown 1997. A Macrophage invasion mechanism of pathogenic mycobacteria.Science. 277:1091-1093.

Leemans, JC, S Florquin, M Heikens, ST Pals, R van der Neut, T van der Poll 2003. CD44 is a macrophage binding site for Mycobacterium tuberculosis that mediates macrophage recruitment and protective immunity against tuberculosis. J Clin Invest. 111:681-689.

van Crevel, R, TH Ottenhoff and JW Der Meer 2002. Innate immunity to Mycobacterium tuberculosis. Clin Microbiol Rev. 15:294-309.

Abel, B, N Thieblemont, VJ Quesniaux, N Brown, J Mpagi, K Miyake, F Bihl and B Ryffel 2002. Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. J. Immunol. 169(6):3155-62.

Reiling, N, C Holscher, A Fehrenbach, S Kroger, CJ Kirschning, S Goyert and S Ehlers 2002. Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection

with Mycobacterium tuberculosis. J Immunol. 169(7):3480-4.

Aderem, A and DM Underhill 1999. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol. 17 : 593-623.

Murray, PJ. 1999. Defining the requirements for immunological control of mycobacterial infections (Reviews).Trends in Microbiol. 7(9):366-372.

Condos, R, WN Rom, YM Liu and NW Schluger 1998. Local Immune responses correlate with presentation and outcome in tuberculosis. Am J. Respir Crit Care Med. 157: 729-735.

López-Hernández, C. 2001. Efecto de Mycobacterium tuberculosis y sus fracciones en la producción de citocinas. Tesis de Licenciatura. U. A. Chiapas (Chiapas, México)

Arce-Mendoza, A, G Arellano-Rangel, A Revol, A Rendón, M Salinas-Carmona, AG Rosas-Taraco 2004. Citocinas en lavado broncoalveolar de pacientes con tuberculosis. Medicina Universitaria. 6:88-95.

Muller, I, S Cobbold, H Waldmann SHE Kaufmann SHE. 1987. Impaired resistance to Mycobacterium tuberculosis infection after selective in vivo depletion of L3T4+ and Lyt2+ T cells. Infect. Immunol. 55: 2037– 2041.

Orme, I and F Collins 1984. Adoptive protection of the Mycobacteria tuberculosis-infected lung. Cell. Immun. 84: 113– 120.

Orme, I and F Collins 1983. Protection against Mycobacterium tuberculosis infection by adoptive immunotherapy. J. Exp. Med. 158: 74– 83.

Selwyn, PA, D Hartel, VA Lewis, EE Schoenbaum, SH Vermund, RS Klein, AT Walker and GH Freidland 1989. A prospective study of the risk of tuberculosis among intravenous drug users with human

immunodeficiency virus infection. New Engl. J. Med. 320: 545– 550.

Campos-Neto, A, P Ovendale, T Bement, TA Koppi, WC Fanslow, MA Rossi MA and MR Alderson. 1998. CD40 ligand is not essential for the development of cell-mediated immunity and resistance to Mycobacterium tuberculosis. J. Immunol. 160: 2037– 2041.

Oddo, M, T. Renno, A Attainger, T Bakker, HR MacDonald and PRA Meylan PRA 1998. Fas ligand-induced apoptosis of infected human macrophages reduces the viability of intracellular Mycobacterium tuberculosis. J. Immunol. 160: 5448– 5454.

Stenger, S, R Mazzaccaro, K Uyemura, S Cho, P Barnes, J Rosat, A Sette, M Brenner, S Porcelli, B Bloom and R Modlin 1997. Differential effects of cytolytic T cell subsets on intracellular infection. Science. 276: 1684– 1687.

Silva, CL and DB Lowrie 2000. Identification and characterization of murine cytotoxic T cells that killMycobacterium tuberculosis. Infect. Immun. 68: 3269– 3274.

VanHeyningen, TK, HL Collins and DG Russell 1997. IL-6 produced by macrophages infected withMycobacterium species suppresses T cell responses. J. Immunol. 158: 330– 337.

Hirsch, CS, JJ Ellner, R Blinkhorn and Z Toossi. 1997. In vitro restoration of T cell responses in tuberculosis and augmentation of monocyte effector function against Mycobacterium tuberculosis by natural inhibitors of transforming growth factor beta. Proc. Natl. Acad. Sci. USA 94: 3926– 3931.

Rojas, RE, KN Balaji, A Subramanian and WH Boom 1999. Regulation of human CD4+ αβ TCR+ and γδ TCR+ T cell responses to Mycobacterium tuberculosis by interleukin-10 and transforming growth factor β. Infect. Immun. 67: 6461– 6472.

Flynn, JL, MM Goldstein, KJ Triebold, B Koller and BR Bloom 1992. Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc. Natl. Acad. Sci. USA. 89: 12,013– 12,017.

Behar, SM, CC Dascher, MJ Grusby, CR Wang and MB Brenner 1999. Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. J. Exp. Med. 189: 1973– 1980.

Sousa, AO, R Mazzaccaro, DG Russell, FK Lee, OC Turner, S Hong, L Van Kaer and BR Bloom 1999. Relative contributions of distinct MHC class I-dependent cell populations in protection to tuberculosis infection in mice. Proc. Natl. Acad. Sci., USA. 97: 4204– 4208.

Flynn, J and J Chan 2001. Immunology of tuberculosis. Annu Rev Immunol. 19: 93-129.

Bellamy, R. 1998. Genetic susceptibility to tuberculosis in human populations. Thorax. 53:588-593.

Abel, L and JL Casanova 2002. Chapter 26 “Immunogenetics of the host response to bacteria and parasites in humans” In Immunology of Infectious Diseases. ASM Press, Washington, D.C. 395-406.

Turgut, T, H Akbulut, F Deveci, C Kacar and M Hamdi Muz 2006. Serum Interleukin-2 and Neopterin Levels as Useful Markers for Treatment of Active Pulmonary Tuberculosis. The Tohoku Journal of Experimental Medicine. 209 (4): 321-328.

Pacheco, E, C Fonseca, C Montes, J Zabaleta, LF Garcia and MA Arias 2004. CD14 gene promoter polymorphism in different clinical forms of tuberculosis. Immunol Med Microbiol. 207-213.

Hardman, JG y LE Limbird 1996. Goodman & Gilman-Las bases farmacológicas de la terapéutica Cap. 48. Edit. Mc Graw Hill, 9ª Ed. 1227-1234.

Published

2007-12-31

How to Cite

Rosas Taraco, A. G., & Arce Mendoza, A. Y. (2007). TUBERCULOSIS: MECANISMOS DE DEFENSA, INMUNOPATOGENESIS Y BIOMARCADORES. RESPYN Revista Salud Pública Y Nutrición, 8(4). Retrieved from https://respyn.uanl.mx/index.php/respyn/article/view/204

Issue

Section

Artículo Original