Una revisión de estudios experimentales sobre hepatotoxicidad relacionada a la exposición por acrilamida
DOI:
https://doi.org/10.29105/respyn23.2-780Palabras clave:
Hígado, Estrés oxidativo, AcrilamidaResumen
Introducción: La acrilamida es un compuesto tóxico que puede formarse en alimentos preparados a altas temperaturas, en exposición crónica provoca neurotoxicidad, genotoxicidad, y puede ser carcinógena. El hígado es el principal encargado de su metabolismo, la acrilamida y sus metabolitos pueden producir daños e inflamación crónica hepática que pueden desencadenar patologías graves. Objetivo: Analizar la información más reciente con relación a la hepatotoxicidad asociada a la ingesta de acrilamida. Material y Método: Se realizó una revisión hemerográfica en PubMed, ScienceDirect y Google Académico, utilizando términos MeSH: liver, toxicity, acrylamide, oxidative stress, Wistar Rat y Booleanos: “and”, “or”, “not” considerando artículos a partir del 2018, seleccionando los que describieran en su contenido datos relacionados las palabras clave. Resultados: La hepatotoxicidad por exposición a acrilamida está relacionada a alteraciones de biomarcadores de estrés oxidativo, cambios en metabolómica y en procesos de autofagia, activación del inflamasoma, y modificaciones estereológicas e histológicas. Conclusión: La información actualizada demuestra que a la hepatotoxicidad asociada a acrilamida le subyacen diversos mecanismos celulares en los que generalmente está involucrado el estrés oxidativo, por ello el abordaje de estrategias para entender y disminuir el impacto de la exposición debe considerar dichos aspectos.
Descargas
Citas
Abdelmegeed, M. A., Ha, S.-K., Choi, Y., Akbar, M., & Song, B.-J. (2017). Role of CYP2E1 in mitochondrial dysfunction and hepatic tissue injury in alcoholic and non-alcoholic diseases. Current molecular pharmacology, 10(3), 207. https://doi.org/10.2174/1874467208666150817111114 DOI: https://doi.org/10.2174/1874467208666150817111114
Ali, A. H. S. A., Ibrahim, R., Ahmed, A., & Talaat, E. (2020). Histological study of toxic effects of acrylamide on the liver and kidney of adult male albino rats. El-Minia Medical Bulletin, 31(3), 345-350. https://doi.org/10.21608/mjmr.2022.220316 DOI: https://doi.org/10.21608/mjmr.2022.220316
Banc, R., Popa, D. S., Cozma-Petruţ, A., Filip, L., Kiss, B., Fărcaş, A., Nagy, A., Miere, D., & Loghin, F. (2022). Protective Effects of Wine Polyphenols on Oxidative Stress and Hepatotoxicity Induced by Acrylamide in Rats. Antioxidants, 11(7), 1347. https://doi.org/10.3390/ANTIOX11071347/S1 DOI: https://doi.org/10.3390/antiox11071347
Belhadj Benziane, A., Dilmi Bouras, A., Mezaini, A., Belhadri, A., & Benali, M. (2018). Effect of oral exposure to acrylamide on biochemical and hematologic parameters in Wistar rats. Https://Doi.Org/10.1080/01480545.2018.1450882, 42(2), 157–166. https://doi.org/10.1080/01480545.2018.1450882 DOI: https://doi.org/10.1080/01480545.2018.1450882
Benford, D., Ceccatelli, S., Cottrill, B., DiNovi, M., Dogliotti, E., Edler, L., Farmer, P., Fürst, P., Hoogenboom, L., Katrine Knutsen, H., Lundebye, A.-K., Metzler, M., Mutti, A., Schouten, L. J., Schrenk, D., & Vleminckx, C. (2015). Scientific Opinion on acrylamide in food. EFSA Journal, 13(6), 4104. https://doi.org/10.2903/J.EFSA.2015.4104 DOI: https://doi.org/10.2903/j.efsa.2015.4104
Bo, N., Yilin, H., Chaoyue, Y., Lu, L., & Yuan, Y. (2020). Acrylamide induces NLRP3 inflammasome activation via oxidative stress- and endoplasmic reticulum stress-mediated MAPK pathway in HepG2 cells. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 145. https://doi.org/10.1016/J.FCT.2020.111679 DOI: https://doi.org/10.1016/j.fct.2020.111679
Cao, C., Shi, H., Zhang, M., Bo, L., Hu, L., Li, S., Chen, S., Jia, S., Liu, Y. J., Liu, Y. L., Zhao, X., & Zhang, L. (2018). Metabonomic analysis of toxic action of long-term low-level exposure to acrylamide in rat serum. Human & Experimental Toxicology, 37(12), 1282–1292. https://doi.org/10.1177/0960327118769708 DOI: https://doi.org/10.1177/0960327118769708
Centurión, J. R., Galeano, A. K., Kennedy, M. L., Campuzano-Bublitz, M. A., Centurión, J. R., Galeano, A. K., Kennedy, M. L., & Campuzano-Bublitz, M. A. (2022). Modelos murinos utilizados en la investigación de la Diabetes mellitus. Revista CON-CIENCIA, 10(2), 53–68. https://doi.org/10.53287/EEEH2318FN45V DOI: https://doi.org/10.53287/eeeh2318fn45v
Contreras-Romo, P. S. (2021). Manual para el manejo adecuado de animales de laboratorio. En Universidad Veracruzana (1a ed.). Universidad Veracruzana. https://libros.uv.mx/index.php/UV/catalog/download/FC296/1604/2657-1?inline=1
Dasari, S., Gonuguntla, S., Yellanurkonda, P., Nagarajan, P., & Meriga, B. (2019). Sensitivity of glutathione S-transferases to high doses of acrylamide in albino wistar rats: Affinity purification, biochemical characterization and expression analysis. Ecotoxicology and Environmental Safety, 182, 109416. https://doi.org/10.1016/J.ECOENV.2019.109416 DOI: https://doi.org/10.1016/j.ecoenv.2019.109416
Dasari, S., Ganjayi, M. S., Gonuguntla, S., Kothapalli, S. R., Konda, P. Y., Basha, S. K. M., Peera, K., & Meriga, B. (2018). Evaluation of biomarkers distress in Acrylamide-Induced hepatic and nephrotoxicity of albino wistar Rat. Advances in Animal and Veterinary Sciences, 6(10). https://doi.org/10.17582/journal.aavs/2018/6.10.427.435 DOI: https://doi.org/10.17582/journal.aavs/2018/6.10.427.435
Deng, L., Zhao, M., Cui, Y., Xia, Q., Jiang, L., Yin, H., & Zhao, L. (2022). Acrylamide induces intrinsic apoptosis and inhibits protective autophagy via the ROS mediated mitochondrial dysfunction pathway in U87-MG cells. Drug and chemical toxicology, 45(6), 2601–2612. https://doi.org/10.1080/01480545.2021.1979030 DOI: https://doi.org/10.1080/01480545.2021.1979030
Esposito, F., Squillante, J., Nolasco, A., Montuori, P., Macrì, P. G., & Cirillo, T. (2022). Acrylamide levels in smoke from conventional cigarettes and heated tobacco products and exposure assessment in habitual smokers. Environmental Research, 208, 112659. https://doi.org/10.1016/J.ENVRES.2021.112659 DOI: https://doi.org/10.1016/j.envres.2021.112659
Farromeque Vásquez, S. (2022). Rol del estrés del retículo endoplasmático, estrés oxidativo y la respuesta inflamatoria en la disfunción de las células β pancreáticas inducida por dieta rica en fructosa: su posible prevención con agentes antioxidantes y chaperonas químicas. http://sedici.unlp.edu.ar/handle/10915/145702
Galuch, M. B., Magon, T. F. S., Silveira, R., Nicácio, A. E., Pizzo, J. S., Bonafe, E. G., Maldaner, L., Santos, O. O., & Visentainer, J. V. (2019). Determination of acrylamide in brewed coffee by dispersive liquid–liquid microextraction (DLLME) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Food Chemistry, 282, 120–126. https://doi.org/10.1016/J.FOODCHEM.2018.12.114 DOI: https://doi.org/10.1016/j.foodchem.2018.12.114
Grebe, A., Hoss, F., & Latz, E. (2018). NLRP3 Inflammasome and the IL-1 Pathway in Atherosclerosis. Circulation Research, 122(12), 1722–1740. https://doi.org/10.1161/CIRCRESAHA.118.311362 DOI: https://doi.org/10.1161/CIRCRESAHA.118.311362
Hölzl-Armstrong, L., Kucab, J. E., Moody, S., Zwart, E. P., Loutkotová, L., Duffy, V., Luijten, M., Gamboa da Costa, G., Stratton, M. R., Phillips, D. H., & Arlt, V. M. (2020). Mutagenicity of acrylamide and glycidamide in human TP53 knock-in (Hupki) mouse embryo fibroblasts. Archives of toxicology, 94(12), 4173–4196. https://doi.org/10.1007/S00204-020-02878-0 DOI: https://doi.org/10.1007/s00204-020-02878-0
Hong, Y., Nan, B., Wu, X., Yan, H., & Yuan, Y. (2019). Allicin alleviates acrylamide-induced oxidative stress in BRL-3A cells. Life Sciences, 231, 116550. https://doi.org/10.1016/J.LFS.2019.116550 DOI: https://doi.org/10.1016/j.lfs.2019.116550
Karimani, A., Hosseinzadeh, H., Mehri, S., Jafarian, A. H., Kamali, S. A., Hooshang Mohammadpour, A., & Karimi, G. (2019). Histopathological and biochemical alterations in non-diabetic and diabetic rats following acrylamide treatment. Https://Doi.Org/10.1080/15569543.2019.1566263, 40(3), 277–284. https://doi.org/10.1080/15569543.2019.1566263 DOI: https://doi.org/10.1080/15569543.2019.1566263
Karimi, M. Y., Fatemi, I., Kalantari, H., Mombeini, M. A., Mehrzadi, S., & Goudarzi, M. (2020). Ellagic Acid Prevents Oxidative Stress, Inflammation, and Histopathological Alterations in Acrylamide-Induced Hepatotoxicity in Wistar Rats. Journal of Dietary Supplements, 17(6), 651–662. https://doi.org/10.1080/19390211.2019.1634175 DOI: https://doi.org/10.1080/19390211.2019.1634175
Komoike, Y., & Matsuoka, M. (2016). Endoplasmic reticulum stress-mediated neuronal apoptosis by acrylamide exposure. Toxicology and Applied Pharmacology, 310, 68–77. https://doi.org/10.1016/J.TAAP.2016.09.005 DOI: https://doi.org/10.1016/j.taap.2016.09.005
Lee, H. M., Kim, J. J., Kim, H. J., Shong, M., Ku, B. J., & Jo, E. K. (2013). Upregulated NLRP3 Inflammasome Activation in Patients With Type 2 Diabetes. Diabetes, 62(1), 194–204. https://doi.org/10.2337/DB12-0420 DOI: https://doi.org/10.2337/db12-0420
Liu, Y., Wang, R., Zheng, K., Xin, Y., Jia, S., & Zhao, X. (2020). Metabonomics analysis of liver in rats administered with chronic low-dose acrylamide. Xenobiotica, 50(8), 894-905. https://doi.org/10.1080/00498254.2020.1714791 DOI: https://doi.org/10.1080/00498254.2020.1714791
Liu, Y., Zhang, X., Yan, D., Wang, Y., Wang, N., Liu, Y., Tan, A., Chen, X., & Yan, H. (2020). Chronic acrylamide exposure induced glia cell activation, NLRP3 infl-ammasome upregulation and cognitive impairment. Toxicology and Applied Pharmacology, 393, 114949. https://doi.org/10.1016/J.TAAP.2020.114949 DOI: https://doi.org/10.1016/j.taap.2020.114949
Markovic Filipovic, J., Miler, M., Kojić, D., Karan, J., Ivelja, I., Kokoris, J. Č., & Matavulj, M. (2022a). Effect of Acrylamide Treatment on Cyp2e1 Expression and Redox Status in Rat Hepatocytes. International Journal of Molecular Sciences 2022, Vol. 23, Page 6062, 23(11), 6062. https://doi.org/10.3390/IJMS23116062 DOI: https://doi.org/10.3390/ijms23116062
Markovic Filipovic, J., Miler, M., Kojic, D., Visnjic, B. A., Milosevic, V., Kokoris, J. C., Dordevic, M., & Matavulj, M. (2022b). Adult Rat Liver After Subchronic Acrylamide Treatment: Histological, Stereological and Biochemical Study. International Journal of Morphology, 40(6), 1618–1623. https://doi.org/10.4067/S0717-95022022000601618 DOI: https://doi.org/10.4067/S0717-95022022000601618
Mehri, S., Abnous, K., Khooei, A., Mousavi, S. H., Shariaty, V. M., & Hosseinzadeh, H. (2015). Crocin reduced acrylamide-induced neurotoxicity in Wistar rat through inhibition of oxidative stress. Iranian Journal of Basic Medical Sciences, 18(9), 902. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4620190/
Nematollahi, A., Kamankesh, M., Hosseini, H., Ghasemi, J., Hosseini-Esfahani, F., & Mohammadi, A. (2019). Investigation and determination of acrylamide in the main group of cereal products using advanced microextraction method coupled with gas chromatography-mass spectrometry. Journal of Cereal Science, 87, 157–164. https://doi.org/10.1016/J.JCS.2019.03.019 DOI: https://doi.org/10.1016/j.jcs.2019.03.019
Ozturk, I., Elbe, H., Bicer, Y., Karayakali, M., Onal, M. O., & Altinoz, E. (2023). Therapeutic role of melatonin on acrylamide-induced hepatotoxicity in pinealectomized rats: Effects on oxidative stress, NF-κB signaling pathway, and hepatocellular proliferation. Food and Chemical Toxicology, 174, 113658. https://doi.org/10.1016/J.FCT.2023.113658 DOI: https://doi.org/10.1016/j.fct.2023.113658
Pyo, M. C., Shin, H. S., Jeon, G. Y., & Lee, K. W. (2020). Synergistic Interaction of Ochratoxin A and Acrylamide Toxins in Human Kidney and Liver Cells. Biological & Pharmaceutical Bulletin, 43(9), 1346–1355. https://doi.org/10.1248/BPB.B20-00282 DOI: https://doi.org/10.1248/bpb.b20-00282
Reglamento (UE) 2017/2158, de 20 de noviembre de 2017, por el que se establecen medidas de mitigación y niveles de referencia para reducir la presencia de acrilamida en alimentos. Comisión Europea, 304/24, de 11 de noviembre de 2017. http://data.europa.eu/eli/reg/2017/2158/oj
Rivadeneyra-Domínguez, E., Becerra-Contreras, Y., Vázquez-Luna, A., Díaz-Sobac, R., & Rodríguez-Landa, J. F. (2018). Alterations of blood chemistry, hepatic and renal function, and blood cytometry in acrylamide-treated rats. Toxicology Reports, 5, 1124–1128. https://doi.org/10.1016/J.TOXREP.2018.11.006 DOI: https://doi.org/10.1016/j.toxrep.2018.11.006
Sánchez-Otero, M. G., Méndez-Santiago, C. N., Luna-Vázquez, F., Soto-Rodríguez, I., García, H. S., & Serrano-Niño, J. C. (2017). Assessment of the Dietary Intake of Acrylamide by Young Adults in Mexico. Journal of Food and Nutrition Research, Vol. 5, 2017, Pages 894-899, 5(12), 894–899. https://doi.org/10.12691/JFNR-5-12-3 DOI: https://doi.org/10.21608/auej.2017.19199
Song, D., Xu, C., Holck, A. L., & Liu, R. (2021). Acrylamide inhibits autophagy, induces apoptosis and alters cellular metabolic profiles. Ecotoxicology and Environmental Safety, 208, 111543. https://doi.org/10.1016/j.ecoenv.2020.111543 DOI: https://doi.org/10.1016/j.ecoenv.2020.111543
Song, M. J., & Malhi, H. (2019). The unfolded protein response and hepatic lipid metabolism in non alcoholic fatty liver disease. Pharmacology & therapeutics, 203. https://doi.org/10.1016/J.PHARMTHERA.2019.107401 DOI: https://doi.org/10.1016/j.pharmthera.2019.107401
Spataru, M.-C., Popovici, I., Pașca, S.-A., Pavel, G., & Solcan, C. (2020). Hepatotoxic and nephrotoxic effect of acrylamide from potato chips in mice. Lucrări Ştiinţifice Seria Medicină Veterinară, 63(2), 176–181. https://repository.uaiasi.ro/xmlui/handle/20.500.12811/275
Sui, X., Yang, J., Zhang, G., Yuan, X. F., Li, W. H., Long, J. H., Luo, Y., Li, Y., & Wang, Y. (2020). NLRP3 inflammasome inhibition attenuates subacute neurotoxicity induced by acrylamide in vitro and in vivo. Toxicology, 432, 152392. https://doi.org/10.1016/J.TOX.2020.152392 DOI: https://doi.org/10.1016/j.tox.2020.152392
Suman, M., Generotti, S., Cirlini, M., & Dall’asta, C. (2019). Acrylamide Reduction Strategy in Combination with Deoxynivalenol Mitigation in Industrial Biscuits Production. Toxins 2019, Vol. 11, Page 499, 11(9), 499. https://doi.org/10.3390/TOXINS11090499 DOI: https://doi.org/10.3390/toxins11090499
Sun, R., Chen, W., Cao, X., Guo, J., & Wang, J. (2020). Protective effect of curcumin on acrylamide-induced hepatic and renal impairment in rats: Involvement of CYP2E1. Natural Product Communications, 15(3), 1–9. https://doi.org/10.1177/1934578X20910548 DOI: https://doi.org/10.1177/1934578X20910548
Tomaszewska, E., Muszyński, S., Świetlicka, I. et al. Prenatal acrylamide exposure results in time-dependent changes in liver function and basal hematological, and oxidative parameters in weaned Wistar rats. Sci Rep 12, 14882 (2022). https://doi.org/10.1038/s41598-022-19178-5 DOI: https://doi.org/10.1038/s41598-022-19178-5
Uthra, C., Reshi, M. S., Jaswal, A., Yadav, D., Shrivastava, S., Sinha, N., & Shukla, S. (2022). Protective efficacy of rutin against acrylamide-induced oxidative stress, biochemical alterations and histopathological lesions in rats. Toxicology research, 11(1), 215–225. https://doi.org/10.1093/TOXRES/TFAB125 DOI: https://doi.org/10.1093/toxres/tfab125
Wang, S. Y., Han, D., Pan, Y. L., Yu, C. P., Zhou, X. R., Xin, R., Wang, R., Ma, W. W., Wang, C., & Wu, Y. H. (2020). A urinary metabolomic study from subjects after long-term occupational exposure to low concentration acrylamide using UPLC-QTOF/MS. Archives of Biochemistry and Biophysics, 681, 108279. https://doi.org/10.1016/J.ABB.2020.108279 DOI: https://doi.org/10.1016/j.abb.2020.108279
Wang, Y., Duan, L., Zhang, X., Jiao, Y., Liu, Y., Dai, L., & Yan, H. (2021). Effect of long-term exposure to acrylamide on endoplasmic reticulum stress and autophagy in rat cerebellum. https://doi.org/10.1016/j.ecoenv.2021.112691 DOI: https://doi.org/10.1016/j.ecoenv.2021.112691
Wu, Y., Li, Y., Jia, W., Zhu, L., Wan, X., Gao, S., & Zhang, Y. (2023). Reconstructing hepatic metabolic profile and glutathione-mediated metabolic fate of acrylamide. Environmental Pollution, 337, 122508. https://doi.org/10.1016/J.ENVPOL.2023.122508 DOI: https://doi.org/10.1016/j.envpol.2023.122508
Yilmaz, B. O., Yildizbayrak, N., Aydin, Y., & Erkan, M. (2017). Evidence of acrylamide- and glycidamide-induced oxidative stress and apoptosis in Leydig and Sertoli cells. Human and Experimental Toxicology, 36(12), 1225–1235. https://doi.org/10.1177/0960327116686818 DOI: https://doi.org/10.1177/0960327116686818
Young, C. N. (2017). Endoplasmic reticulum stress in the pathogenesis of hypertension. Experimental physiology, 102(8), 869–884. https://doi.org/10.1113/EP086274 DOI: https://doi.org/10.1113/EP086274
Yu, L., Hong, W., Lu, S., Li, Y., Guan, Y., Weng, X., & Feng, Z. (2022). The NLRP3 Inflammasome in Non-Alcoholic Fatty Liver Disease and Steatohepatitis: Therapeutic Targets and Treatment. Frontiers in Pharmacology, 13. https://doi.org/10.3389/FPHAR.2022.780496/FULL DOI: https://doi.org/10.3389/fphar.2022.780496
Xu, F., Oruna-Concha, M. J., & Elmore, J. S. (2016). The use of asparaginase to reduce acrylamide levels in cooked food. Food Chemistry, 210, 163–171. https://doi.org/10.1016/J.FOODCHEM.2016.04.105 DOI: https://doi.org/10.1016/j.foodchem.2016.04.105
Zamani, E., Shaki, F., AbedianKenari, S., & Shokrzadeh, M. (2017). Acrylamide induces immunotoxicity through reactive oxygen species production and caspase-dependent apoptosis in mice splenocytes via the mitochondria-dependent signaling pathways. Biomedicine & Pharmacotherapy, 94, 523–530. https://doi.org/10.1016/j.biopha.2017.07.033 DOI: https://doi.org/10.1016/j.biopha.2017.07.033
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 María-Guadalupe Martínez-Otríz, Luis-Carlos García-Palafox, Ángeles Martínez-Toto, Ruben Ruíz-Ramos, MARÍA-GUADALUPE SÁNCHEZ-OTERO
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los derechos del trabajo pertenecen al autor o autores, sin embargo, al enviarlo a publicación en la Revista Salud Pública y Nutrición de la Facultad de Salud Pública y Nutrición de la Universidad Autónoma de Nuevo León, le otorgan el derecho para su primera publicación en medio electrónico, y posiblemente, en medio impreso a la Revista Salud Pública y Nutrición. La licencia que se utiliza es la de atribución de Creative Commons , que permite a terceros utilizar lo publicado siempre que se mencione la autoría del trabajo y a la primera publicación que es en la Revista Salud Pública y Nutrición. Asimismo, el o los autores tendrán en cuenta que no estará permitido enviar la publicación a ninguna otra revista, sin importar el formato. Los autores estarán en posibilidad de realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en la Revista Salud Pública y Nutrición (p. ej., repositorio institucional o publicación en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en la Revista Salud Pública, Revista de la Facultad de Salud Pública y Nutrición de la Universidad Autónoma de Nuevo León.