Una revisión de estudios experimentales sobre hepatotoxicidad relacionada a la exposición por acrilamida

Autores/as

DOI:

https://doi.org/10.29105/respyn23.2-780

Palabras clave:

Hígado, Estrés oxidativo, Acrilamida

Resumen

Introducción: La acrilamida es un compuesto tóxico que puede formarse en alimentos preparados a altas temperaturas, en exposición crónica provoca neurotoxicidad, genotoxicidad, y puede ser carcinógena. El hígado es el principal encargado de su metabolismo, la acrilamida y sus metabolitos pueden producir daños e inflamación crónica hepática que pueden desencadenar patologías graves. Objetivo: Analizar la información más reciente con relación a la hepatotoxicidad asociada a la ingesta de acrilamida. Material y Método: Se realizó una revisión hemerográfica en PubMed, ScienceDirect y Google Académico, utilizando términos MeSH: liver, toxicity, acrylamide, oxidative stress, Wistar Rat y Booleanos: “and”, “or”, “not” considerando artículos a partir del 2018, seleccionando los que describieran en su contenido datos relacionados las palabras clave. Resultados: La hepatotoxicidad por exposición a acrilamida está relacionada a alteraciones de biomarcadores de estrés oxidativo, cambios en metabolómica y en procesos de autofagia, activación del inflamasoma, y modificaciones estereológicas e histológicas. Conclusión: La información actualizada demuestra que a la hepatotoxicidad asociada a acrilamida le subyacen diversos mecanismos celulares en los que generalmente está involucrado el estrés oxidativo, por ello el abordaje de estrategias para entender y disminuir el impacto de la exposición debe considerar dichos aspectos.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

María-Guadalupe Martínez-Otríz, https://www.uv.mx/orizaba/medicina/,Universidad Veracruzana

María Guadalupe Martínez Ortiz es estudiante de la Licenciatura en Medicina en la Universdad Veracruzana Región Córdoba-Orizaba, actualmente cursa el 10º semestre. Ha participado en estancias virtuales y presenciales de investigación, así como Congresos nacionales. 

Luis-Carlos García-Palafox, Facultad de Bioanálisis, Región Veracruz, Universidad Veracruzana,Universidad Veracruzana

Luis Carlos García Palafox es estudiante de la Maestría en Química Clínica en la Universdad Veracruzana Región Veracruz. Tiene la Licenciatura en Química Clínica. Ha participado en estancias virtuales y presenciales de investigación, así como Congresos nacionales y estancias cortas de Investigación nacionales. 

Ángeles Martínez-Toto, Facultad de Bioanálisis

Ángeles Martínez Toto es egresada de Licenciatura en Química Clínica. Ha participado en Congresos nacionales, su trabajo de tesis de licenciatura fue en relación a toxicidad de acrilamida en linfocitos .

Ruben Ruíz-Ramos, Facultad de Medicina, Región Veracruz, Universidad Veracruzana,Universidad Veracruzana

El Dr. Rubén Ruiz Ramos es egresado de la Licenciatura en biología por la UNAM, maestro en Ciencias y Doctor en Ciencias con especialidad en Toxicología por el CINVESAV-IPN. Cuenta con 40 artíkculos prublicados en revistas internacionales indexadas con impacto en el área de la toxicología molecular, así como artículos de divulagación científica. Actualmente se encuentra adscrito a la facultad de Medicina de la Universidad Veracruzana como investigador de tiempo completo, forma parte de los NAB de la maestría en Química Clínica y del Doctorado en investigación Químico-Biológica, ambos en el SNP-CONAHCYT

María Guadalupe Sánchez Otero, UNIVERSIDAD VERACRUZANA

   

Citas

Abdelmegeed, M. A., Ha, S.-K., Choi, Y., Akbar, M., & Song, B.-J. (2017). Role of CYP2E1 in mitochondrial dysfunction and hepatic tissue injury in alcoholic and non-alcoholic diseases. Current molecular pharmacology, 10(3), 207. https://doi.org/10.2174/1874467208666150817111114 DOI: https://doi.org/10.2174/1874467208666150817111114

Ali, A. H. S. A., Ibrahim, R., Ahmed, A., & Talaat, E. (2020). Histological study of toxic effects of acrylamide on the liver and kidney of adult male albino rats. El-Minia Medical Bulletin, 31(3), 345-350. https://doi.org/10.21608/mjmr.2022.220316 DOI: https://doi.org/10.21608/mjmr.2022.220316

Banc, R., Popa, D. S., Cozma-Petruţ, A., Filip, L., Kiss, B., Fărcaş, A., Nagy, A., Miere, D., & Loghin, F. (2022). Protective Effects of Wine Polyphenols on Oxidative Stress and Hepatotoxicity Induced by Acrylamide in Rats. Antioxidants, 11(7), 1347. https://doi.org/10.3390/ANTIOX11071347/S1 DOI: https://doi.org/10.3390/antiox11071347

Belhadj Benziane, A., Dilmi Bouras, A., Mezaini, A., Belhadri, A., & Benali, M. (2018). Effect of oral exposure to acrylamide on biochemical and hematologic parameters in Wistar rats. Https://Doi.Org/10.1080/01480545.2018.1450882, 42(2), 157–166. https://doi.org/10.1080/01480545.2018.1450882 DOI: https://doi.org/10.1080/01480545.2018.1450882

Benford, D., Ceccatelli, S., Cottrill, B., DiNovi, M., Dogliotti, E., Edler, L., Farmer, P., Fürst, P., Hoogenboom, L., Katrine Knutsen, H., Lundebye, A.-K., Metzler, M., Mutti, A., Schouten, L. J., Schrenk, D., & Vleminckx, C. (2015). Scientific Opinion on acrylamide in food. EFSA Journal, 13(6), 4104. https://doi.org/10.2903/J.EFSA.2015.4104 DOI: https://doi.org/10.2903/j.efsa.2015.4104

Bo, N., Yilin, H., Chaoyue, Y., Lu, L., & Yuan, Y. (2020). Acrylamide induces NLRP3 inflammasome activation via oxidative stress- and endoplasmic reticulum stress-mediated MAPK pathway in HepG2 cells. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 145. https://doi.org/10.1016/J.FCT.2020.111679 DOI: https://doi.org/10.1016/j.fct.2020.111679

Cao, C., Shi, H., Zhang, M., Bo, L., Hu, L., Li, S., Chen, S., Jia, S., Liu, Y. J., Liu, Y. L., Zhao, X., & Zhang, L. (2018). Metabonomic analysis of toxic action of long-term low-level exposure to acrylamide in rat serum. Human & Experimental Toxicology, 37(12), 1282–1292. https://doi.org/10.1177/0960327118769708 DOI: https://doi.org/10.1177/0960327118769708

Centurión, J. R., Galeano, A. K., Kennedy, M. L., Campuzano-Bublitz, M. A., Centurión, J. R., Galeano, A. K., Kennedy, M. L., & Campuzano-Bublitz, M. A. (2022). Modelos murinos utilizados en la investigación de la Diabetes mellitus. Revista CON-CIENCIA, 10(2), 53–68. https://doi.org/10.53287/EEEH2318FN45V DOI: https://doi.org/10.53287/eeeh2318fn45v

Contreras-Romo, P. S. (2021). Manual para el manejo adecuado de animales de laboratorio. En Universidad Veracruzana (1a ed.). Universidad Veracruzana. https://libros.uv.mx/index.php/UV/catalog/download/FC296/1604/2657-1?inline=1

Dasari, S., Gonuguntla, S., Yellanurkonda, P., Nagarajan, P., & Meriga, B. (2019). Sensitivity of glutathione S-transferases to high doses of acrylamide in albino wistar rats: Affinity purification, biochemical characterization and expression analysis. Ecotoxicology and Environmental Safety, 182, 109416. https://doi.org/10.1016/J.ECOENV.2019.109416 DOI: https://doi.org/10.1016/j.ecoenv.2019.109416

Dasari, S., Ganjayi, M. S., Gonuguntla, S., Kothapalli, S. R., Konda, P. Y., Basha, S. K. M., Peera, K., & Meriga, B. (2018). Evaluation of biomarkers distress in Acrylamide-Induced hepatic and nephrotoxicity of albino wistar Rat. Advances in Animal and Veterinary Sciences, 6(10). https://doi.org/10.17582/journal.aavs/2018/6.10.427.435 DOI: https://doi.org/10.17582/journal.aavs/2018/6.10.427.435

Deng, L., Zhao, M., Cui, Y., Xia, Q., Jiang, L., Yin, H., & Zhao, L. (2022). Acrylamide induces intrinsic apoptosis and inhibits protective autophagy via the ROS mediated mitochondrial dysfunction pathway in U87-MG cells. Drug and chemical toxicology, 45(6), 2601–2612. https://doi.org/10.1080/01480545.2021.1979030 DOI: https://doi.org/10.1080/01480545.2021.1979030

Esposito, F., Squillante, J., Nolasco, A., Montuori, P., Macrì, P. G., & Cirillo, T. (2022). Acrylamide levels in smoke from conventional cigarettes and heated tobacco products and exposure assessment in habitual smokers. Environmental Research, 208, 112659. https://doi.org/10.1016/J.ENVRES.2021.112659 DOI: https://doi.org/10.1016/j.envres.2021.112659

Farromeque Vásquez, S. (2022). Rol del estrés del retículo endoplasmático, estrés oxidativo y la respuesta inflamatoria en la disfunción de las células β pancreáticas inducida por dieta rica en fructosa: su posible prevención con agentes antioxidantes y chaperonas químicas. http://sedici.unlp.edu.ar/handle/10915/145702

Galuch, M. B., Magon, T. F. S., Silveira, R., Nicácio, A. E., Pizzo, J. S., Bonafe, E. G., Maldaner, L., Santos, O. O., & Visentainer, J. V. (2019). Determination of acrylamide in brewed coffee by dispersive liquid–liquid microextraction (DLLME) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Food Chemistry, 282, 120–126. https://doi.org/10.1016/J.FOODCHEM.2018.12.114 DOI: https://doi.org/10.1016/j.foodchem.2018.12.114

Grebe, A., Hoss, F., & Latz, E. (2018). NLRP3 Inflammasome and the IL-1 Pathway in Atherosclerosis. Circulation Research, 122(12), 1722–1740. https://doi.org/10.1161/CIRCRESAHA.118.311362 DOI: https://doi.org/10.1161/CIRCRESAHA.118.311362

Hölzl-Armstrong, L., Kucab, J. E., Moody, S., Zwart, E. P., Loutkotová, L., Duffy, V., Luijten, M., Gamboa da Costa, G., Stratton, M. R., Phillips, D. H., & Arlt, V. M. (2020). Mutagenicity of acrylamide and glycidamide in human TP53 knock-in (Hupki) mouse embryo fibroblasts. Archives of toxicology, 94(12), 4173–4196. https://doi.org/10.1007/S00204-020-02878-0 DOI: https://doi.org/10.1007/s00204-020-02878-0

Hong, Y., Nan, B., Wu, X., Yan, H., & Yuan, Y. (2019). Allicin alleviates acrylamide-induced oxidative stress in BRL-3A cells. Life Sciences, 231, 116550. https://doi.org/10.1016/J.LFS.2019.116550 DOI: https://doi.org/10.1016/j.lfs.2019.116550

Karimani, A., Hosseinzadeh, H., Mehri, S., Jafarian, A. H., Kamali, S. A., Hooshang Mohammadpour, A., & Karimi, G. (2019). Histopathological and biochemical alterations in non-diabetic and diabetic rats following acrylamide treatment. Https://Doi.Org/10.1080/15569543.2019.1566263, 40(3), 277–284. https://doi.org/10.1080/15569543.2019.1566263 DOI: https://doi.org/10.1080/15569543.2019.1566263

Karimi, M. Y., Fatemi, I., Kalantari, H., Mombeini, M. A., Mehrzadi, S., & Goudarzi, M. (2020). Ellagic Acid Prevents Oxidative Stress, Inflammation, and Histopathological Alterations in Acrylamide-Induced Hepatotoxicity in Wistar Rats. Journal of Dietary Supplements, 17(6), 651–662. https://doi.org/10.1080/19390211.2019.1634175 DOI: https://doi.org/10.1080/19390211.2019.1634175

Komoike, Y., & Matsuoka, M. (2016). Endoplasmic reticulum stress-mediated neuronal apoptosis by acrylamide exposure. Toxicology and Applied Pharmacology, 310, 68–77. https://doi.org/10.1016/J.TAAP.2016.09.005 DOI: https://doi.org/10.1016/j.taap.2016.09.005

Lee, H. M., Kim, J. J., Kim, H. J., Shong, M., Ku, B. J., & Jo, E. K. (2013). Upregulated NLRP3 Inflammasome Activation in Patients With Type 2 Diabetes. Diabetes, 62(1), 194–204. https://doi.org/10.2337/DB12-0420 DOI: https://doi.org/10.2337/db12-0420

Liu, Y., Wang, R., Zheng, K., Xin, Y., Jia, S., & Zhao, X. (2020). Metabonomics analysis of liver in rats administered with chronic low-dose acrylamide. Xenobiotica, 50(8), 894-905. https://doi.org/10.1080/00498254.2020.1714791 DOI: https://doi.org/10.1080/00498254.2020.1714791

Liu, Y., Zhang, X., Yan, D., Wang, Y., Wang, N., Liu, Y., Tan, A., Chen, X., & Yan, H. (2020). Chronic acrylamide exposure induced glia cell activation, NLRP3 infl-ammasome upregulation and cognitive impairment. Toxicology and Applied Pharmacology, 393, 114949. https://doi.org/10.1016/J.TAAP.2020.114949 DOI: https://doi.org/10.1016/j.taap.2020.114949

Markovic Filipovic, J., Miler, M., Kojić, D., Karan, J., Ivelja, I., Kokoris, J. Č., & Matavulj, M. (2022a). Effect of Acrylamide Treatment on Cyp2e1 Expression and Redox Status in Rat Hepatocytes. International Journal of Molecular Sciences 2022, Vol. 23, Page 6062, 23(11), 6062. https://doi.org/10.3390/IJMS23116062 DOI: https://doi.org/10.3390/ijms23116062

Markovic Filipovic, J., Miler, M., Kojic, D., Visnjic, B. A., Milosevic, V., Kokoris, J. C., Dordevic, M., & Matavulj, M. (2022b). Adult Rat Liver After Subchronic Acrylamide Treatment: Histological, Stereological and Biochemical Study. International Journal of Morphology, 40(6), 1618–1623. https://doi.org/10.4067/S0717-95022022000601618 DOI: https://doi.org/10.4067/S0717-95022022000601618

Mehri, S., Abnous, K., Khooei, A., Mousavi, S. H., Shariaty, V. M., & Hosseinzadeh, H. (2015). Crocin reduced acrylamide-induced neurotoxicity in Wistar rat through inhibition of oxidative stress. Iranian Journal of Basic Medical Sciences, 18(9), 902. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4620190/

Nematollahi, A., Kamankesh, M., Hosseini, H., Ghasemi, J., Hosseini-Esfahani, F., & Mohammadi, A. (2019). Investigation and determination of acrylamide in the main group of cereal products using advanced microextraction method coupled with gas chromatography-mass spectrometry. Journal of Cereal Science, 87, 157–164. https://doi.org/10.1016/J.JCS.2019.03.019 DOI: https://doi.org/10.1016/j.jcs.2019.03.019

Ozturk, I., Elbe, H., Bicer, Y., Karayakali, M., Onal, M. O., & Altinoz, E. (2023). Therapeutic role of melatonin on acrylamide-induced hepatotoxicity in pinealectomized rats: Effects on oxidative stress, NF-κB signaling pathway, and hepatocellular proliferation. Food and Chemical Toxicology, 174, 113658. https://doi.org/10.1016/J.FCT.2023.113658 DOI: https://doi.org/10.1016/j.fct.2023.113658

Pyo, M. C., Shin, H. S., Jeon, G. Y., & Lee, K. W. (2020). Synergistic Interaction of Ochratoxin A and Acrylamide Toxins in Human Kidney and Liver Cells. Biological & Pharmaceutical Bulletin, 43(9), 1346–1355. https://doi.org/10.1248/BPB.B20-00282 DOI: https://doi.org/10.1248/bpb.b20-00282

Reglamento (UE) 2017/2158, de 20 de noviembre de 2017, por el que se establecen medidas de mitigación y niveles de referencia para reducir la presencia de acrilamida en alimentos. Comisión Europea, 304/24, de 11 de noviembre de 2017. http://data.europa.eu/eli/reg/2017/2158/oj

Rivadeneyra-Domínguez, E., Becerra-Contreras, Y., Vázquez-Luna, A., Díaz-Sobac, R., & Rodríguez-Landa, J. F. (2018). Alterations of blood chemistry, hepatic and renal function, and blood cytometry in acrylamide-treated rats. Toxicology Reports, 5, 1124–1128. https://doi.org/10.1016/J.TOXREP.2018.11.006 DOI: https://doi.org/10.1016/j.toxrep.2018.11.006

Sánchez-Otero, M. G., Méndez-Santiago, C. N., Luna-Vázquez, F., Soto-Rodríguez, I., García, H. S., & Serrano-Niño, J. C. (2017). Assessment of the Dietary Intake of Acrylamide by Young Adults in Mexico. Journal of Food and Nutrition Research, Vol. 5, 2017, Pages 894-899, 5(12), 894–899. https://doi.org/10.12691/JFNR-5-12-3 DOI: https://doi.org/10.21608/auej.2017.19199

Song, D., Xu, C., Holck, A. L., & Liu, R. (2021). Acrylamide inhibits autophagy, induces apoptosis and alters cellular metabolic profiles. Ecotoxicology and Environmental Safety, 208, 111543. https://doi.org/10.1016/j.ecoenv.2020.111543 DOI: https://doi.org/10.1016/j.ecoenv.2020.111543

Song, M. J., & Malhi, H. (2019). The unfolded protein response and hepatic lipid metabolism in non alcoholic fatty liver disease. Pharmacology & therapeutics, 203. https://doi.org/10.1016/J.PHARMTHERA.2019.107401 DOI: https://doi.org/10.1016/j.pharmthera.2019.107401

Spataru, M.-C., Popovici, I., Pașca, S.-A., Pavel, G., & Solcan, C. (2020). Hepatotoxic and nephrotoxic effect of acrylamide from potato chips in mice. Lucrări Ştiinţifice Seria Medicină Veterinară, 63(2), 176–181. https://repository.uaiasi.ro/xmlui/handle/20.500.12811/275

Sui, X., Yang, J., Zhang, G., Yuan, X. F., Li, W. H., Long, J. H., Luo, Y., Li, Y., & Wang, Y. (2020). NLRP3 inflammasome inhibition attenuates subacute neurotoxicity induced by acrylamide in vitro and in vivo. Toxicology, 432, 152392. https://doi.org/10.1016/J.TOX.2020.152392 DOI: https://doi.org/10.1016/j.tox.2020.152392

Suman, M., Generotti, S., Cirlini, M., & Dall’asta, C. (2019). Acrylamide Reduction Strategy in Combination with Deoxynivalenol Mitigation in Industrial Biscuits Production. Toxins 2019, Vol. 11, Page 499, 11(9), 499. https://doi.org/10.3390/TOXINS11090499 DOI: https://doi.org/10.3390/toxins11090499

Sun, R., Chen, W., Cao, X., Guo, J., & Wang, J. (2020). Protective effect of curcumin on acrylamide-induced hepatic and renal impairment in rats: Involvement of CYP2E1. Natural Product Communications, 15(3), 1–9. https://doi.org/10.1177/1934578X20910548 DOI: https://doi.org/10.1177/1934578X20910548

Tomaszewska, E., Muszyński, S., Świetlicka, I. et al. Prenatal acrylamide exposure results in time-dependent changes in liver function and basal hematological, and oxidative parameters in weaned Wistar rats. Sci Rep 12, 14882 (2022). https://doi.org/10.1038/s41598-022-19178-5 DOI: https://doi.org/10.1038/s41598-022-19178-5

Uthra, C., Reshi, M. S., Jaswal, A., Yadav, D., Shrivastava, S., Sinha, N., & Shukla, S. (2022). Protective efficacy of rutin against acrylamide-induced oxidative stress, biochemical alterations and histopathological lesions in rats. Toxicology research, 11(1), 215–225. https://doi.org/10.1093/TOXRES/TFAB125 DOI: https://doi.org/10.1093/toxres/tfab125

Wang, S. Y., Han, D., Pan, Y. L., Yu, C. P., Zhou, X. R., Xin, R., Wang, R., Ma, W. W., Wang, C., & Wu, Y. H. (2020). A urinary metabolomic study from subjects after long-term occupational exposure to low concentration acrylamide using UPLC-QTOF/MS. Archives of Biochemistry and Biophysics, 681, 108279. https://doi.org/10.1016/J.ABB.2020.108279 DOI: https://doi.org/10.1016/j.abb.2020.108279

Wang, Y., Duan, L., Zhang, X., Jiao, Y., Liu, Y., Dai, L., & Yan, H. (2021). Effect of long-term exposure to acrylamide on endoplasmic reticulum stress and autophagy in rat cerebellum. https://doi.org/10.1016/j.ecoenv.2021.112691 DOI: https://doi.org/10.1016/j.ecoenv.2021.112691

Wu, Y., Li, Y., Jia, W., Zhu, L., Wan, X., Gao, S., & Zhang, Y. (2023). Reconstructing hepatic metabolic profile and glutathione-mediated metabolic fate of acrylamide. Environmental Pollution, 337, 122508. https://doi.org/10.1016/J.ENVPOL.2023.122508 DOI: https://doi.org/10.1016/j.envpol.2023.122508

Yilmaz, B. O., Yildizbayrak, N., Aydin, Y., & Erkan, M. (2017). Evidence of acrylamide- and glycidamide-induced oxidative stress and apoptosis in Leydig and Sertoli cells. Human and Experimental Toxicology, 36(12), 1225–1235. https://doi.org/10.1177/0960327116686818 DOI: https://doi.org/10.1177/0960327116686818

Young, C. N. (2017). Endoplasmic reticulum stress in the pathogenesis of hypertension. Experimental physiology, 102(8), 869–884. https://doi.org/10.1113/EP086274 DOI: https://doi.org/10.1113/EP086274

Yu, L., Hong, W., Lu, S., Li, Y., Guan, Y., Weng, X., & Feng, Z. (2022). The NLRP3 Inflammasome in Non-Alcoholic Fatty Liver Disease and Steatohepatitis: Therapeutic Targets and Treatment. Frontiers in Pharmacology, 13. https://doi.org/10.3389/FPHAR.2022.780496/FULL DOI: https://doi.org/10.3389/fphar.2022.780496

Xu, F., Oruna-Concha, M. J., & Elmore, J. S. (2016). The use of asparaginase to reduce acrylamide levels in cooked food. Food Chemistry, 210, 163–171. https://doi.org/10.1016/J.FOODCHEM.2016.04.105 DOI: https://doi.org/10.1016/j.foodchem.2016.04.105

Zamani, E., Shaki, F., AbedianKenari, S., & Shokrzadeh, M. (2017). Acrylamide induces immunotoxicity through reactive oxygen species production and caspase-dependent apoptosis in mice splenocytes via the mitochondria-dependent signaling pathways. Biomedicine & Pharmacotherapy, 94, 523–530. https://doi.org/10.1016/j.biopha.2017.07.033 DOI: https://doi.org/10.1016/j.biopha.2017.07.033

Descargas

Publicado

2024-06-03

Cómo citar

Martínez-Otríz, M.-G., García-Palafox, L.-C., Martínez-Toto, Ángeles, Ruíz-Ramos, R., & Sánchez Otero, M. G. (2024). Una revisión de estudios experimentales sobre hepatotoxicidad relacionada a la exposición por acrilamida. RESPYN Revista Salud Pública Y Nutrición, 23(2), 35–46. https://doi.org/10.29105/respyn23.2-780

Número

Sección

Artículo de Revisión