A review of experimental studies on hepatotoxicity related to acrylamide exposure

Authors

DOI:

https://doi.org/10.29105/respyn23.2-780

Keywords:

Liver, Oxidative stress, Acrylamide

Abstract

Introduction: Acrylamide is a toxic compound that can be formed in foods prepared at high temperatures; chronic exposure to it causes neurotoxicity, genotoxicity, and it is consider as a potential carcinogenic. Liver is the main organ that metabolizes acrylamide and there, acrylamide and its metabolites can cause damage and chronic inflammation that might trigger serious pathologies. Objective: To analyze the most recent information regarding hepatotoxicity associated with the ingestion of acrylamide. Material and method: A journal search was conducted in PubMed, ScienceDirect and Google Scholar, using MeSH terms: liver, toxicity, acrylamide, oxidative stress, Wistar Rat and Booleans: “and”, “or”, “not”, and considering articles from 2018, selecting those that described in its content data related keywords. Results: Hepatotoxicity due to exposure to acrylamide is related to alterations in oxidative stress biomarkers, changes in metabolomics and autophagy processes, inflammasome activation, and stereological and histological modifications. Conclusion: The updated information in the available literature demonstrates that hepatotoxicity associated with acrylamide consumption is underlain by various cellular mechanisms in which oxidative stress is generally involved, therefore the approach to develop strategies to understand and reduce the impact of exposure must consider these aspects.

Downloads

Download data is not yet available.

Author Biographies

María-Guadalupe Martínez-Otríz, University of Veracruz

María Guadalupe Martínez Ortiz is a student of the Bachelor of Medicine at the Universidad Veracruzana Córdoba-Orizaba Region, currently in her 10th semester. He has participated in virtual and in-person research stays, as well as national conferences.

Luis-Carlos García-Palafox, University of Veracruz

Luis Carlos García Palafox is a student of the Master's Degree in Clinical Chemistry at the Universidad Veracruzana Veracruz Region. He has a Bachelor's Degree in Clinical Chemistry. He has participated in virtual and in-person research stays, as well as national conferences and short national research stays.

Ángeles Martínez-Toto, University of Veracruz

Ángeles Martínez Toto has a degree in Clinical Chemistry. He has participated in national conferences, his undergraduate thesis work was in relation to acrylamide toxicity in lymphocytes.

Ruben Ruíz-Ramos, University of Veracruz

Dr. Rubén Ruiz Ramos has a Bachelor's degree in Biology from UNAM, a Master of Science and a Doctor of Science with a specialty in Toxicology at CINVESAV-IPN. He has  published 40 articles in indexed international journals with impact in the area of ​​molecular toxicology; also, he has publisehd scientific divulgation articles. He is currently assigned to the Faculty of Medicine of the Universidad Veracruzana as a full-time researcher, he is part of the NAB of the Master's degree in Clinical Chemistry and the Doctorate in Chemical-Biological research, both prgramas in the SNP-CONAHCYT.

María Guadalupe Sánchez Otero, UNIVERSIDAD VERACRUZANA

   

References

Abdelmegeed, M. A., Ha, S.-K., Choi, Y., Akbar, M., & Song, B.-J. (2017). Role of CYP2E1 in mitochondrial dysfunction and hepatic tissue injury in alcoholic and non-alcoholic diseases. Current molecular pharmacology, 10(3), 207. https://doi.org/10.2174/1874467208666150817111114 DOI: https://doi.org/10.2174/1874467208666150817111114

Ali, A. H. S. A., Ibrahim, R., Ahmed, A., & Talaat, E. (2020). Histological study of toxic effects of acrylamide on the liver and kidney of adult male albino rats. El-Minia Medical Bulletin, 31(3), 345-350. https://doi.org/10.21608/mjmr.2022.220316 DOI: https://doi.org/10.21608/mjmr.2022.220316

Banc, R., Popa, D. S., Cozma-Petruţ, A., Filip, L., Kiss, B., Fărcaş, A., Nagy, A., Miere, D., & Loghin, F. (2022). Protective Effects of Wine Polyphenols on Oxidative Stress and Hepatotoxicity Induced by Acrylamide in Rats. Antioxidants, 11(7), 1347. https://doi.org/10.3390/ANTIOX11071347/S1 DOI: https://doi.org/10.3390/antiox11071347

Belhadj Benziane, A., Dilmi Bouras, A., Mezaini, A., Belhadri, A., & Benali, M. (2018). Effect of oral exposure to acrylamide on biochemical and hematologic parameters in Wistar rats. Https://Doi.Org/10.1080/01480545.2018.1450882, 42(2), 157–166. https://doi.org/10.1080/01480545.2018.1450882 DOI: https://doi.org/10.1080/01480545.2018.1450882

Benford, D., Ceccatelli, S., Cottrill, B., DiNovi, M., Dogliotti, E., Edler, L., Farmer, P., Fürst, P., Hoogenboom, L., Katrine Knutsen, H., Lundebye, A.-K., Metzler, M., Mutti, A., Schouten, L. J., Schrenk, D., & Vleminckx, C. (2015). Scientific Opinion on acrylamide in food. EFSA Journal, 13(6), 4104. https://doi.org/10.2903/J.EFSA.2015.4104 DOI: https://doi.org/10.2903/j.efsa.2015.4104

Bo, N., Yilin, H., Chaoyue, Y., Lu, L., & Yuan, Y. (2020). Acrylamide induces NLRP3 inflammasome activation via oxidative stress- and endoplasmic reticulum stress-mediated MAPK pathway in HepG2 cells. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 145. https://doi.org/10.1016/J.FCT.2020.111679 DOI: https://doi.org/10.1016/j.fct.2020.111679

Cao, C., Shi, H., Zhang, M., Bo, L., Hu, L., Li, S., Chen, S., Jia, S., Liu, Y. J., Liu, Y. L., Zhao, X., & Zhang, L. (2018). Metabonomic analysis of toxic action of long-term low-level exposure to acrylamide in rat serum. Human & Experimental Toxicology, 37(12), 1282–1292. https://doi.org/10.1177/0960327118769708 DOI: https://doi.org/10.1177/0960327118769708

Centurión, J. R., Galeano, A. K., Kennedy, M. L., Campuzano-Bublitz, M. A., Centurión, J. R., Galeano, A. K., Kennedy, M. L., & Campuzano-Bublitz, M. A. (2022). Modelos murinos utilizados en la investigación de la Diabetes mellitus. Revista CON-CIENCIA, 10(2), 53–68. https://doi.org/10.53287/EEEH2318FN45V DOI: https://doi.org/10.53287/eeeh2318fn45v

Contreras-Romo, P. S. (2021). Manual para el manejo adecuado de animales de laboratorio. En Universidad Veracruzana (1a ed.). Universidad Veracruzana. https://libros.uv.mx/index.php/UV/catalog/download/FC296/1604/2657-1?inline=1

Dasari, S., Gonuguntla, S., Yellanurkonda, P., Nagarajan, P., & Meriga, B. (2019). Sensitivity of glutathione S-transferases to high doses of acrylamide in albino wistar rats: Affinity purification, biochemical characterization and expression analysis. Ecotoxicology and Environmental Safety, 182, 109416. https://doi.org/10.1016/J.ECOENV.2019.109416 DOI: https://doi.org/10.1016/j.ecoenv.2019.109416

Dasari, S., Ganjayi, M. S., Gonuguntla, S., Kothapalli, S. R., Konda, P. Y., Basha, S. K. M., Peera, K., & Meriga, B. (2018). Evaluation of biomarkers distress in Acrylamide-Induced hepatic and nephrotoxicity of albino wistar Rat. Advances in Animal and Veterinary Sciences, 6(10). https://doi.org/10.17582/journal.aavs/2018/6.10.427.435 DOI: https://doi.org/10.17582/journal.aavs/2018/6.10.427.435

Deng, L., Zhao, M., Cui, Y., Xia, Q., Jiang, L., Yin, H., & Zhao, L. (2022). Acrylamide induces intrinsic apoptosis and inhibits protective autophagy via the ROS mediated mitochondrial dysfunction pathway in U87-MG cells. Drug and chemical toxicology, 45(6), 2601–2612. https://doi.org/10.1080/01480545.2021.1979030 DOI: https://doi.org/10.1080/01480545.2021.1979030

Esposito, F., Squillante, J., Nolasco, A., Montuori, P., Macrì, P. G., & Cirillo, T. (2022). Acrylamide levels in smoke from conventional cigarettes and heated tobacco products and exposure assessment in habitual smokers. Environmental Research, 208, 112659. https://doi.org/10.1016/J.ENVRES.2021.112659 DOI: https://doi.org/10.1016/j.envres.2021.112659

Farromeque Vásquez, S. (2022). Rol del estrés del retículo endoplasmático, estrés oxidativo y la respuesta inflamatoria en la disfunción de las células β pancreáticas inducida por dieta rica en fructosa: su posible prevención con agentes antioxidantes y chaperonas químicas. http://sedici.unlp.edu.ar/handle/10915/145702

Galuch, M. B., Magon, T. F. S., Silveira, R., Nicácio, A. E., Pizzo, J. S., Bonafe, E. G., Maldaner, L., Santos, O. O., & Visentainer, J. V. (2019). Determination of acrylamide in brewed coffee by dispersive liquid–liquid microextraction (DLLME) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Food Chemistry, 282, 120–126. https://doi.org/10.1016/J.FOODCHEM.2018.12.114 DOI: https://doi.org/10.1016/j.foodchem.2018.12.114

Grebe, A., Hoss, F., & Latz, E. (2018). NLRP3 Inflammasome and the IL-1 Pathway in Atherosclerosis. Circulation Research, 122(12), 1722–1740. https://doi.org/10.1161/CIRCRESAHA.118.311362 DOI: https://doi.org/10.1161/CIRCRESAHA.118.311362

Hölzl-Armstrong, L., Kucab, J. E., Moody, S., Zwart, E. P., Loutkotová, L., Duffy, V., Luijten, M., Gamboa da Costa, G., Stratton, M. R., Phillips, D. H., & Arlt, V. M. (2020). Mutagenicity of acrylamide and glycidamide in human TP53 knock-in (Hupki) mouse embryo fibroblasts. Archives of toxicology, 94(12), 4173–4196. https://doi.org/10.1007/S00204-020-02878-0 DOI: https://doi.org/10.1007/s00204-020-02878-0

Hong, Y., Nan, B., Wu, X., Yan, H., & Yuan, Y. (2019). Allicin alleviates acrylamide-induced oxidative stress in BRL-3A cells. Life Sciences, 231, 116550. https://doi.org/10.1016/J.LFS.2019.116550 DOI: https://doi.org/10.1016/j.lfs.2019.116550

Karimani, A., Hosseinzadeh, H., Mehri, S., Jafarian, A. H., Kamali, S. A., Hooshang Mohammadpour, A., & Karimi, G. (2019). Histopathological and biochemical alterations in non-diabetic and diabetic rats following acrylamide treatment. Https://Doi.Org/10.1080/15569543.2019.1566263, 40(3), 277–284. https://doi.org/10.1080/15569543.2019.1566263 DOI: https://doi.org/10.1080/15569543.2019.1566263

Karimi, M. Y., Fatemi, I., Kalantari, H., Mombeini, M. A., Mehrzadi, S., & Goudarzi, M. (2020). Ellagic Acid Prevents Oxidative Stress, Inflammation, and Histopathological Alterations in Acrylamide-Induced Hepatotoxicity in Wistar Rats. Journal of Dietary Supplements, 17(6), 651–662. https://doi.org/10.1080/19390211.2019.1634175 DOI: https://doi.org/10.1080/19390211.2019.1634175

Komoike, Y., & Matsuoka, M. (2016). Endoplasmic reticulum stress-mediated neuronal apoptosis by acrylamide exposure. Toxicology and Applied Pharmacology, 310, 68–77. https://doi.org/10.1016/J.TAAP.2016.09.005 DOI: https://doi.org/10.1016/j.taap.2016.09.005

Lee, H. M., Kim, J. J., Kim, H. J., Shong, M., Ku, B. J., & Jo, E. K. (2013). Upregulated NLRP3 Inflammasome Activation in Patients With Type 2 Diabetes. Diabetes, 62(1), 194–204. https://doi.org/10.2337/DB12-0420 DOI: https://doi.org/10.2337/db12-0420

Liu, Y., Wang, R., Zheng, K., Xin, Y., Jia, S., & Zhao, X. (2020). Metabonomics analysis of liver in rats administered with chronic low-dose acrylamide. Xenobiotica, 50(8), 894-905. https://doi.org/10.1080/00498254.2020.1714791 DOI: https://doi.org/10.1080/00498254.2020.1714791

Liu, Y., Zhang, X., Yan, D., Wang, Y., Wang, N., Liu, Y., Tan, A., Chen, X., & Yan, H. (2020). Chronic acrylamide exposure induced glia cell activation, NLRP3 infl-ammasome upregulation and cognitive impairment. Toxicology and Applied Pharmacology, 393, 114949. https://doi.org/10.1016/J.TAAP.2020.114949 DOI: https://doi.org/10.1016/j.taap.2020.114949

Markovic Filipovic, J., Miler, M., Kojić, D., Karan, J., Ivelja, I., Kokoris, J. Č., & Matavulj, M. (2022a). Effect of Acrylamide Treatment on Cyp2e1 Expression and Redox Status in Rat Hepatocytes. International Journal of Molecular Sciences 2022, Vol. 23, Page 6062, 23(11), 6062. https://doi.org/10.3390/IJMS23116062 DOI: https://doi.org/10.3390/ijms23116062

Markovic Filipovic, J., Miler, M., Kojic, D., Visnjic, B. A., Milosevic, V., Kokoris, J. C., Dordevic, M., & Matavulj, M. (2022b). Adult Rat Liver After Subchronic Acrylamide Treatment: Histological, Stereological and Biochemical Study. International Journal of Morphology, 40(6), 1618–1623. https://doi.org/10.4067/S0717-95022022000601618 DOI: https://doi.org/10.4067/S0717-95022022000601618

Mehri, S., Abnous, K., Khooei, A., Mousavi, S. H., Shariaty, V. M., & Hosseinzadeh, H. (2015). Crocin reduced acrylamide-induced neurotoxicity in Wistar rat through inhibition of oxidative stress. Iranian Journal of Basic Medical Sciences, 18(9), 902. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4620190/

Nematollahi, A., Kamankesh, M., Hosseini, H., Ghasemi, J., Hosseini-Esfahani, F., & Mohammadi, A. (2019). Investigation and determination of acrylamide in the main group of cereal products using advanced microextraction method coupled with gas chromatography-mass spectrometry. Journal of Cereal Science, 87, 157–164. https://doi.org/10.1016/J.JCS.2019.03.019 DOI: https://doi.org/10.1016/j.jcs.2019.03.019

Ozturk, I., Elbe, H., Bicer, Y., Karayakali, M., Onal, M. O., & Altinoz, E. (2023). Therapeutic role of melatonin on acrylamide-induced hepatotoxicity in pinealectomized rats: Effects on oxidative stress, NF-κB signaling pathway, and hepatocellular proliferation. Food and Chemical Toxicology, 174, 113658. https://doi.org/10.1016/J.FCT.2023.113658 DOI: https://doi.org/10.1016/j.fct.2023.113658

Pyo, M. C., Shin, H. S., Jeon, G. Y., & Lee, K. W. (2020). Synergistic Interaction of Ochratoxin A and Acrylamide Toxins in Human Kidney and Liver Cells. Biological & Pharmaceutical Bulletin, 43(9), 1346–1355. https://doi.org/10.1248/BPB.B20-00282 DOI: https://doi.org/10.1248/bpb.b20-00282

Reglamento (UE) 2017/2158, de 20 de noviembre de 2017, por el que se establecen medidas de mitigación y niveles de referencia para reducir la presencia de acrilamida en alimentos. Comisión Europea, 304/24, de 11 de noviembre de 2017. http://data.europa.eu/eli/reg/2017/2158/oj

Rivadeneyra-Domínguez, E., Becerra-Contreras, Y., Vázquez-Luna, A., Díaz-Sobac, R., & Rodríguez-Landa, J. F. (2018). Alterations of blood chemistry, hepatic and renal function, and blood cytometry in acrylamide-treated rats. Toxicology Reports, 5, 1124–1128. https://doi.org/10.1016/J.TOXREP.2018.11.006 DOI: https://doi.org/10.1016/j.toxrep.2018.11.006

Sánchez-Otero, M. G., Méndez-Santiago, C. N., Luna-Vázquez, F., Soto-Rodríguez, I., García, H. S., & Serrano-Niño, J. C. (2017). Assessment of the Dietary Intake of Acrylamide by Young Adults in Mexico. Journal of Food and Nutrition Research, Vol. 5, 2017, Pages 894-899, 5(12), 894–899. https://doi.org/10.12691/JFNR-5-12-3 DOI: https://doi.org/10.21608/auej.2017.19199

Song, D., Xu, C., Holck, A. L., & Liu, R. (2021). Acrylamide inhibits autophagy, induces apoptosis and alters cellular metabolic profiles. Ecotoxicology and Environmental Safety, 208, 111543. https://doi.org/10.1016/j.ecoenv.2020.111543 DOI: https://doi.org/10.1016/j.ecoenv.2020.111543

Song, M. J., & Malhi, H. (2019). The unfolded protein response and hepatic lipid metabolism in non alcoholic fatty liver disease. Pharmacology & therapeutics, 203. https://doi.org/10.1016/J.PHARMTHERA.2019.107401 DOI: https://doi.org/10.1016/j.pharmthera.2019.107401

Spataru, M.-C., Popovici, I., Pașca, S.-A., Pavel, G., & Solcan, C. (2020). Hepatotoxic and nephrotoxic effect of acrylamide from potato chips in mice. Lucrări Ştiinţifice Seria Medicină Veterinară, 63(2), 176–181. https://repository.uaiasi.ro/xmlui/handle/20.500.12811/275

Sui, X., Yang, J., Zhang, G., Yuan, X. F., Li, W. H., Long, J. H., Luo, Y., Li, Y., & Wang, Y. (2020). NLRP3 inflammasome inhibition attenuates subacute neurotoxicity induced by acrylamide in vitro and in vivo. Toxicology, 432, 152392. https://doi.org/10.1016/J.TOX.2020.152392 DOI: https://doi.org/10.1016/j.tox.2020.152392

Suman, M., Generotti, S., Cirlini, M., & Dall’asta, C. (2019). Acrylamide Reduction Strategy in Combination with Deoxynivalenol Mitigation in Industrial Biscuits Production. Toxins 2019, Vol. 11, Page 499, 11(9), 499. https://doi.org/10.3390/TOXINS11090499 DOI: https://doi.org/10.3390/toxins11090499

Sun, R., Chen, W., Cao, X., Guo, J., & Wang, J. (2020). Protective effect of curcumin on acrylamide-induced hepatic and renal impairment in rats: Involvement of CYP2E1. Natural Product Communications, 15(3), 1–9. https://doi.org/10.1177/1934578X20910548 DOI: https://doi.org/10.1177/1934578X20910548

Tomaszewska, E., Muszyński, S., Świetlicka, I. et al. Prenatal acrylamide exposure results in time-dependent changes in liver function and basal hematological, and oxidative parameters in weaned Wistar rats. Sci Rep 12, 14882 (2022). https://doi.org/10.1038/s41598-022-19178-5 DOI: https://doi.org/10.1038/s41598-022-19178-5

Uthra, C., Reshi, M. S., Jaswal, A., Yadav, D., Shrivastava, S., Sinha, N., & Shukla, S. (2022). Protective efficacy of rutin against acrylamide-induced oxidative stress, biochemical alterations and histopathological lesions in rats. Toxicology research, 11(1), 215–225. https://doi.org/10.1093/TOXRES/TFAB125 DOI: https://doi.org/10.1093/toxres/tfab125

Wang, S. Y., Han, D., Pan, Y. L., Yu, C. P., Zhou, X. R., Xin, R., Wang, R., Ma, W. W., Wang, C., & Wu, Y. H. (2020). A urinary metabolomic study from subjects after long-term occupational exposure to low concentration acrylamide using UPLC-QTOF/MS. Archives of Biochemistry and Biophysics, 681, 108279. https://doi.org/10.1016/J.ABB.2020.108279 DOI: https://doi.org/10.1016/j.abb.2020.108279

Wang, Y., Duan, L., Zhang, X., Jiao, Y., Liu, Y., Dai, L., & Yan, H. (2021). Effect of long-term exposure to acrylamide on endoplasmic reticulum stress and autophagy in rat cerebellum. https://doi.org/10.1016/j.ecoenv.2021.112691 DOI: https://doi.org/10.1016/j.ecoenv.2021.112691

Wu, Y., Li, Y., Jia, W., Zhu, L., Wan, X., Gao, S., & Zhang, Y. (2023). Reconstructing hepatic metabolic profile and glutathione-mediated metabolic fate of acrylamide. Environmental Pollution, 337, 122508. https://doi.org/10.1016/J.ENVPOL.2023.122508 DOI: https://doi.org/10.1016/j.envpol.2023.122508

Yilmaz, B. O., Yildizbayrak, N., Aydin, Y., & Erkan, M. (2017). Evidence of acrylamide- and glycidamide-induced oxidative stress and apoptosis in Leydig and Sertoli cells. Human and Experimental Toxicology, 36(12), 1225–1235. https://doi.org/10.1177/0960327116686818 DOI: https://doi.org/10.1177/0960327116686818

Young, C. N. (2017). Endoplasmic reticulum stress in the pathogenesis of hypertension. Experimental physiology, 102(8), 869–884. https://doi.org/10.1113/EP086274 DOI: https://doi.org/10.1113/EP086274

Yu, L., Hong, W., Lu, S., Li, Y., Guan, Y., Weng, X., & Feng, Z. (2022). The NLRP3 Inflammasome in Non-Alcoholic Fatty Liver Disease and Steatohepatitis: Therapeutic Targets and Treatment. Frontiers in Pharmacology, 13. https://doi.org/10.3389/FPHAR.2022.780496/FULL DOI: https://doi.org/10.3389/fphar.2022.780496

Xu, F., Oruna-Concha, M. J., & Elmore, J. S. (2016). The use of asparaginase to reduce acrylamide levels in cooked food. Food Chemistry, 210, 163–171. https://doi.org/10.1016/J.FOODCHEM.2016.04.105 DOI: https://doi.org/10.1016/j.foodchem.2016.04.105

Zamani, E., Shaki, F., AbedianKenari, S., & Shokrzadeh, M. (2017). Acrylamide induces immunotoxicity through reactive oxygen species production and caspase-dependent apoptosis in mice splenocytes via the mitochondria-dependent signaling pathways. Biomedicine & Pharmacotherapy, 94, 523–530. https://doi.org/10.1016/j.biopha.2017.07.033 DOI: https://doi.org/10.1016/j.biopha.2017.07.033

Published

2024-06-03

How to Cite

Martínez-Otríz, M.-G., García-Palafox, L.-C., Martínez-Toto, Ángeles, Ruíz-Ramos, R., & Sánchez Otero, M. G. (2024). A review of experimental studies on hepatotoxicity related to acrylamide exposure. RESPYN Revista Salud Pública Y Nutrición, 23(2), 35–46. https://doi.org/10.29105/respyn23.2-780

Issue

Section

Artículo de Revisión

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.