Biotransformation of Resveratrol and Its Affinity for COX-2: An In Silico Analysis of Its Anti-Inflammatory Potential

Authors

DOI:

https://doi.org/10.29105/respyn24.3-885

Keywords:

Resveratrol, Inflamación, Polifenoles, Microbiota gastrointestinal, Biología computacional

Abstract

Introduction: Chronic inflammation is implicated in the pathogenesis of various degenerative diseases and is closely associated with the overexpression of cyclooxygenase-2 (COX-2), a key enzyme in the inflammatory response. Resveratrol, a phenolic compound found in grapes, berries, and peanuts, has demonstrated anti-inflammatory properties, partly attributed to its interaction with COX-2. Objective: To evaluate, using in silico tools, the gut microbiota-mediated biotransformation of resveratrol and the potential anti-inflammatory effects of its metabolites on COX-2. Material and method: The BioTransformer platform was used to predict structural modifications of resveratrol induced by microbial enzymes. The resulting metabolites, stilbendiol and stilbenol, were analyzed for their pharmacokinetic properties and potential molecular targets using SwissADME and SwissTargetPrediction. Their binding affinity to COX-2 was subsequently evaluated through molecular docking with AutoDock. Results: Computational analyses indicated that bacterial dehydroxylases generate two resveratrol derivatives: 3,4’-dihydroxy-trans-stilbene and trans-4-hydroxystilbene. Both compounds were predicted to target COX-2 (probability ≥ 0.4) and displayed favorable pharmacokinetic properties (LogP ≥ 2). However, molecular docking suggested that stilbenol has a stronger binding affinity to the COX-2 active site (−7.09 kcal/mol).  Conclusion: Gut microbiota may enhance the anti-inflammatory efficacy of resveratrol through its biotransformation into more active metabolites, such as trans-4-hydroxystilbene. To the best of our knowledge, this is the first study to identify stilbenol as a potential COX-2 inhibitor.

Downloads

Download data is not yet available.

Author Biographies

Alejandra Niño Sánchez, Universidad Autónoma de Nuevo León

Egresada de la Licenciatura de Nutrición de la Facultad de Salud Pública y Nutrición. Estudiante de la Maestría en Ciencias en Nutrición de la misma facultad.

Alpha Berenice Medellín Guerrero, Autonomous University of Nuevo León

Maestra en Salud Pública con Especialidad en Nutrición Comunitaria. Subdirectora de Proyectos Educativos de la Facultad de Salud Pública y Nutrición.

Elizabeth Solís Pérez, Universidad Autónoma de Nuevo León

Profesora-investigadora de tiempo completo titular D de la Facultad de Salud Pública y Nutrición de la Universidad Autónoma de Nuevo León.

Doctorado en Filosofía con especialidad en nutrición, Texas Woman’s University, EE. UU.

Maestría en Salud Pública con especialidad en salud en el trabajo, Facultad de Salud Pública, UANL.

Directora de la Dirección del Centro de Incubación de Empresas y Transferencia de Tecnología de la UANL.

Directora, Facultad de Salud Pública y Nutrición, UANL, de 1994 a 2000.

Profesora-investigadora titular D, de 2005 a la fecha.

Manuel López-Cabanillas Lomelí, Universidad Autónoma de Nuevo León

Profesor – Investigador de la Facultad de Salud Pública y Nutrición de la Universidad Autónoma de Nuevo León. Doctorado en Ciencias de los Alimentos, Unversitat Autónoma de Barcelona, España.

Coordinador de Internacionalización de la Subdirección de Acreditación e Internacionalización.

Subdirector de Posgrado e Investigación de la Facultad de Salud Pública y Nutrición de la UANL.

Actual director de la Facultad de Salud Pública y Nutrición.

Luis Fernando Méndez López, Universidad Autónoma de Nuevo León

Profesor de Inmunología en la Facultad de Salud Pública y Nutrición de la Universidad Autónoma de Nuevo León. Doctor en Ciencias en Farmacia, Maestro en Ciencias en Nutrición, Maestro en Ciencias en Inmunobiología y Químico Bacteriólogo por la Universidad Autónoma de Nuevo León. También cuenta con estudios formales en Biología de Sistemas, en Metabolómica Clínica y en Inmunonutrición, por la Universidad Nacional Autónoma de México, la Universidad de Cagliari en Italia y la Escuela de Medicina de la Universidad Católica de Valencia en España, respectivamente.

References

Abbas, S. R., Khan, R. T., Shafique, S., Mumtaz, S., Khan, A. A., Khan, A. M., Hassan, Z., Hussain, S. A., Abbas, S., Abbas, M. R., Batool, A., & Safder, M. A. (2023). Study of resveratrol against bone loss by using in-silico and in-vitro methods. Brazilian Journal of Biology, 83. https://doi.org/10.1590/1519-6984.248024 DOI: https://doi.org/10.1590/1519-6984.248024

Al-Mohaya, M., Mesut, B., Kurt, A., & Çelik, Y. S. (2024). In silico approaches which are used in pharmacy. Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/JAPS.2024.154854 DOI: https://doi.org/10.7324/JAPS.2024.154854

Anupama, K. P., Antony, A., Shilpa, O., & Gurushankara, H. P. (2022). In Silico Techniques: Powerful Tool for the Development of Therapeutics. In Functional Foods and Therapeutic Strategies for Neurodegenerative Disorders (pp. 177–202). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-6703-9_11 DOI: https://doi.org/10.1007/978-981-16-6703-9_11

Attiq, A., Jalil, J., Husain, K., & Ahmad, W. (2018). Raging the war against inflammation with natural products. Frontiers in Pharmacology, 9(976). https://doi.org/10.3389/fphar.2018.00976 DOI: https://doi.org/10.3389/fphar.2018.00976

Bode, L. M., Bunzel, D., Huch, M., Cho, G.-S., Ruhland, D., Bunzel, M., Bub, A., Franz, C. M., & Kulling, S. E. (2013). In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. The American Journal of Clinical Nutrition, 97(2), 295–309.

https://doi.org/10.3945/ajcn.112.049379 DOI: https://doi.org/10.3945/ajcn.112.049379

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717 DOI: https://doi.org/10.1038/srep42717

Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W364. https://doi.org/10.1093/nar/gkz382 DOI: https://doi.org/10.1093/nar/gkz382

Desai, S. J., Prickril, B., & Rasooly, A. (2018). Mechanisms of Phytonutrient Modulation of Cyclooxygenase-2 (COX-2) and Inflammation Related to Cancer. Nutrition and Cancer, 70(3), 350–375. https://doi.org/10.1080/01635581.2018.1446091 DOI: https://doi.org/10.1080/01635581.2018.1446091

Djoumbou-Feunang, Y., Fiamoncini, J., Gil-de-la-Fuente, A., Greiner, R., Manach, C., & Wishart, D. S. (2019). BioTransformer: a comprehensive computational tool for small molecule metabolism prediction and metabolite identification. Journal of Cheminformatics, 11(1), 2. https://doi.org/10.1186/s13321-018-0324-5 DOI: https://doi.org/10.1186/s13321-018-0324-5

Du, X., Li, Y., Xia, Y.-L., Ai, S.-M., Liang, J., Sang, P., Ji, X.-L., & Liu, S.-Q. (2016). Insights into protein–ligand interactions: mechanisms, models, and methods. International Journal of Molecular Sciences, 17(2), 144. https://doi.org/10.3390/ijms17020144 DOI: https://doi.org/10.3390/ijms17020144

García Meijide, J. A., & Gómez-Reino Carnota, J. J. (2000). Fisiopatología de la ciclooxigenasa-1 y ciclooxigenasa-2. Revista Española de Reumatología, 27(1). https://www.elsevier.es/es-revista-revista-espanola-reumatologia-29-articulo-fisiopatologia-ciclooxigenasa-1-ciclooxigenasa-2-8546

González-Sarrías, A., Espín-Aguilar, J. C., Romero-Reyes, S., Puigcerver, J., Alajarín, M., Berná, J., Selma, M. V., & Espín, J. C. (2022). Main Determinants Affecting the Antiproliferative Activity of Stilbenes and Their Gut Microbiota Metabolites in Colon Cancer Cells: A Structure–Activity Relationship Study. International Journal of Molecular Sciences, 23(23), 15102. https://doi.org/10.3390/ijms232315102 DOI: https://doi.org/10.3390/ijms232315102

Greten, F. R., & Grivennikov, S. I. (2019). Inflammation and cancer: triggers, mechanisms, and consequences. Immunity, 51(1), 27–41. https://doi.org/10.1016/j.immuni.2019.06.025 DOI: https://doi.org/10.1016/j.immuni.2019.06.025

Gupta, O., & Rani, S. (2011). Bioinformatics Applications and Tools: An Overview. CiiT International Journal of Biometrics and Bioinformatics, 3(3), 107–110.

Iglesias-Aguirre, C. E., Vallejo, F., Beltrán, D., Berná, J., Puigcerver, J., Alajarín, M., Selma, M. V., & Espín, J. C. (2022). 4-Hydroxydibenzyl: a novel metabolite from the human gut microbiota after consuming resveratrol. Food & Function, 13(14), 7487–7493. https://doi.org/10.1039/D2FO01475K DOI: https://doi.org/10.1039/D2FO01475K

Ko, J.-H., Sethi, G., Um, J.-Y., Shanmugam, M. K., Arfuso, F., Kumar, A. P., Bishayee, A., & Ahn, K. S. (2017). The role of resveratrol in cancer therapy. International Journal of Molecular Sciences, 18(12), 2589. https://doi.org/10.3390/ijms18122589 DOI: https://doi.org/10.3390/ijms18122589

Kurowska, A., Ziemichód, W., Herbet, M., & Piątkowska-Chmiel, I. (2023). The Role of Diet as a Modulator of the Inflammatory Process in the Neurological Diseases. Nutrients, 15(6), 1436. https://doi.org/10.3390/nu15061436 DOI: https://doi.org/10.3390/nu15061436

Leláková, V., Šmejkal, K., Jakubczyk, K., Veselý, O., Landa, P., Václavík, J., Bobáľ, P., Pížová, H., Temml, V., Steinacher, T., Schuster, D., Granica, S., Hanáková, Z., & Hošek, J. (2019). Parallel in vitro and in silico investigations into anti-inflammatory effects of non-prenylated stilbenoids. Food Chemistry, 285, 431–440. https://doi.org/10.1016/j.foodchem.2019.01.128 DOI: https://doi.org/10.1016/j.foodchem.2019.01.128

Li, B., Xiong, M., & Zhang, H.-Y. (2014). Elucidating Polypharmacological Mechanisms of Polyphenols by Gene Module Profile Analysis. International Journal of Molecular Sciences, 15(7), 11245–11254. https://doi.org/10.3390/ijms150711245 DOI: https://doi.org/10.3390/ijms150711245

Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1 DOI: https://doi.org/10.1016/S0169-409X(96)00423-1

Makarewicz, M., Drożdż, I., Tarko, T., & Duda-Chodak, A. (2021). The interactions between polyphenols and microorganisms, especially gut microbiota. Antioxidants, 10(2), 188. https://doi.org/10.3390/antiox10020188 DOI: https://doi.org/10.3390/antiox10020188

Malaguarnera, L. (2019). Influence of Resveratrol on the Immune Response. Nutrients, 11(5), 946. https://doi.org/10.3390/nu11050946 DOI: https://doi.org/10.3390/nu11050946

Malesza, I. J., Malesza, M., Walkowiak, J., Mussin, N., Walkowiak, D., Aringazina, R., Bartkowiak-Wieczorek, J., & Mądry, E. (2021). High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells, 10(11), 3164.

https://doi.org/10.3390/cells10113164 DOI: https://doi.org/10.3390/cells10113164

Martínez-Canabal, A., & Rivas-Arancibia, S. (2005). Funciones de las prostaglandinas en el sistema nervioso central. Revista de La Facultad de Medicina, 48(5), 210–216. https://www.medigraphic.com/pdfs/facmed/un-2005/un055i.pdf

Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature, 454(7203), 428–435. https://doi.org/10.1038/nature07201 DOI: https://doi.org/10.1038/nature07201

Méndez López, L. F., González Llerena, J. L., Vázquez Rodríguez, J. A., Medellín Guerrero, A. B., González Martínez, B. E., Solís Pérez, E., & López-Cabanillas Lomelí, M. (2024). Dietary Modulation of the Immune System. Nutrients, 16(24), 4363.

https://doi.org/10.3390/nu16244363 DOI: https://doi.org/10.3390/nu16244363

Méndez-López, L. F., Sosa de León, D., López-Cabanillas Lomelí, M., González-Martínez, B. E., & Vázquez-Rodríguez, J. A. (2022). Phytochemicals from Vicia faba beans as ligands of the aryl hydrocarbon receptor to regulate autoimmune diseases. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.790440 DOI: https://doi.org/10.3389/fnut.2022.790440

Meng, X., Zhou, J., Zhao, C.-N., Gan, R.-Y., & Li, H.-B. (2020). Health Benefits and Molecular Mechanisms of Resveratrol: A Narrative Review. Foods, 9(3), 340. https://doi.org/10.3390/foods9030340 DOI: https://doi.org/10.3390/foods9030340

Murias, M., Handler, N., Erker, T., Pleban, K., Ecker, G., Saiko, P., Szekeres, T., & Jäger, W. (2004). Resveratrol analogues as selective cyclooxygenase-2 inhibitors: synthesis and structure–activity relationship. Bioorganic & Medicinal Chemistry, 12(21), 5571–5578. https://doi.org/10.1016/j.bmc.2004.08.008 DOI: https://doi.org/10.1016/j.bmc.2004.08.008

Murota, K., Nakamura, Y., & Uehara, M. (2018). Flavonoid metabolism: the interaction of metabolites and gut microbiota. Bioscience, Biotechnology, and Biochemistry, 82(4), 600–610. https://doi.org/10.1080/09168451.2018.1444467 DOI: https://doi.org/10.1080/09168451.2018.1444467

Pannu, N., & Bhatnagar, A. (2019). Resveratrol: from enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomedicine & Pharmacotherapy, 109, 2237–2251. https://doi.org/10.1016/j.biopha.2018.11.075 DOI: https://doi.org/10.1016/j.biopha.2018.11.075

Prieto-Martínez, F. D., Arciniega, M., & Medina-Franco, J. L. (2018). Acoplamiento Molecular: Avances Recientes y Retos. TIP Revista Especializada En Ciencias Químico-Biológicas, 21. https://doi.org/10.22201/fesz.23958723e.2018.0.143 DOI: https://doi.org/10.22201/fesz.23958723e.2018.0.143

Singh, A., Zahra, S., & Kumar, S. (2019). In-silico Tools in Phytochemical Research. In Phytochemistry: An in-silico and in-vitro Update (pp. 351–372). Springer Singapore. https://doi.org/10.1007/978-981-13-6920-9_19 DOI: https://doi.org/10.1007/978-981-13-6920-9_19

Springer, M., & Moco, S. (2019). Resveratrol and its human metabolites—effects on metabolic health and obesity. Nutrients, 11(1), 143. https://doi.org/10.3390/nu11010143 DOI: https://doi.org/10.3390/nu11010143

Walle, T., Hsieh, F., DeLegge, M. H., Oatis, J. E., & Walle, U. K. (2004). High Absorption but Very Low Bioavailability of Oral Resveratrol in Humans. Drug Metabolism and Disposition, 32(12), 1377–1382. https://doi.org/10.1124/dmd.104.000885 DOI: https://doi.org/10.1124/dmd.104.000885

Wishart, D. S., Tian, S., Allen, D., Oler, E., Peters, H., Lui, V. W., Gautam, V., Djoumbou-Feunang, Y., Greiner, R., & Metz, T. O. (2022). BioTransformer 3.0—a web server for accurately predicting metabolic transformation products. Nucleic Acids Research, 50(W1), W115–W123. https://doi.org/10.1093/nar/0 DOI: https://doi.org/10.1093/nar/gkac313

Xu, Y., Fang, M., Li, X., Wang, D., Yu, L., Ma, F., Jiang, J., Zhang, L., & Li, P. (2024). Contributions of Common Foods to Resveratrol Intake in the Chinese Diet. Foods, 13(8), 1267. https://doi.org/10.3390/foods13081267 DOI: https://doi.org/10.3390/foods13081267

Published

2025-10-17

How to Cite

Niño Sánchez, A., Medellín Guerrero, A. B., Solís Pérez, E., López-Cabanillas Lomelí, M., & Méndez López, L. F. (2025). Biotransformation of Resveratrol and Its Affinity for COX-2: An In Silico Analysis of Its Anti-Inflammatory Potential. RESPYN Revista Salud Pública Y Nutrición, 24(3), 18–26. https://doi.org/10.29105/respyn24.3-885

Issue

Section

Artículo Original

Most read articles by the same author(s)

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.