Biotransformation of Resveratrol and Its Affinity for COX-2: An In Silico Analysis of Its Anti-Inflammatory Potential
DOI:
https://doi.org/10.29105/respyn24.3-885Keywords:
Resveratrol, Inflamación, Polifenoles, Microbiota gastrointestinal, Biología computacionalAbstract
Introduction: Chronic inflammation is implicated in the pathogenesis of various degenerative diseases and is closely associated with the overexpression of cyclooxygenase-2 (COX-2), a key enzyme in the inflammatory response. Resveratrol, a phenolic compound found in grapes, berries, and peanuts, has demonstrated anti-inflammatory properties, partly attributed to its interaction with COX-2. Objective: To evaluate, using in silico tools, the gut microbiota-mediated biotransformation of resveratrol and the potential anti-inflammatory effects of its metabolites on COX-2. Material and method: The BioTransformer platform was used to predict structural modifications of resveratrol induced by microbial enzymes. The resulting metabolites, stilbendiol and stilbenol, were analyzed for their pharmacokinetic properties and potential molecular targets using SwissADME and SwissTargetPrediction. Their binding affinity to COX-2 was subsequently evaluated through molecular docking with AutoDock. Results: Computational analyses indicated that bacterial dehydroxylases generate two resveratrol derivatives: 3,4’-dihydroxy-trans-stilbene and trans-4-hydroxystilbene. Both compounds were predicted to target COX-2 (probability ≥ 0.4) and displayed favorable pharmacokinetic properties (LogP ≥ 2). However, molecular docking suggested that stilbenol has a stronger binding affinity to the COX-2 active site (−7.09 kcal/mol). Conclusion: Gut microbiota may enhance the anti-inflammatory efficacy of resveratrol through its biotransformation into more active metabolites, such as trans-4-hydroxystilbene. To the best of our knowledge, this is the first study to identify stilbenol as a potential COX-2 inhibitor.
Downloads
References
Abbas, S. R., Khan, R. T., Shafique, S., Mumtaz, S., Khan, A. A., Khan, A. M., Hassan, Z., Hussain, S. A., Abbas, S., Abbas, M. R., Batool, A., & Safder, M. A. (2023). Study of resveratrol against bone loss by using in-silico and in-vitro methods. Brazilian Journal of Biology, 83. https://doi.org/10.1590/1519-6984.248024 DOI: https://doi.org/10.1590/1519-6984.248024
Al-Mohaya, M., Mesut, B., Kurt, A., & Çelik, Y. S. (2024). In silico approaches which are used in pharmacy. Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/JAPS.2024.154854 DOI: https://doi.org/10.7324/JAPS.2024.154854
Anupama, K. P., Antony, A., Shilpa, O., & Gurushankara, H. P. (2022). In Silico Techniques: Powerful Tool for the Development of Therapeutics. In Functional Foods and Therapeutic Strategies for Neurodegenerative Disorders (pp. 177–202). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-6703-9_11 DOI: https://doi.org/10.1007/978-981-16-6703-9_11
Attiq, A., Jalil, J., Husain, K., & Ahmad, W. (2018). Raging the war against inflammation with natural products. Frontiers in Pharmacology, 9(976). https://doi.org/10.3389/fphar.2018.00976 DOI: https://doi.org/10.3389/fphar.2018.00976
Bode, L. M., Bunzel, D., Huch, M., Cho, G.-S., Ruhland, D., Bunzel, M., Bub, A., Franz, C. M., & Kulling, S. E. (2013). In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. The American Journal of Clinical Nutrition, 97(2), 295–309.
https://doi.org/10.3945/ajcn.112.049379 DOI: https://doi.org/10.3945/ajcn.112.049379
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717 DOI: https://doi.org/10.1038/srep42717
Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W364. https://doi.org/10.1093/nar/gkz382 DOI: https://doi.org/10.1093/nar/gkz382
Desai, S. J., Prickril, B., & Rasooly, A. (2018). Mechanisms of Phytonutrient Modulation of Cyclooxygenase-2 (COX-2) and Inflammation Related to Cancer. Nutrition and Cancer, 70(3), 350–375. https://doi.org/10.1080/01635581.2018.1446091 DOI: https://doi.org/10.1080/01635581.2018.1446091
Djoumbou-Feunang, Y., Fiamoncini, J., Gil-de-la-Fuente, A., Greiner, R., Manach, C., & Wishart, D. S. (2019). BioTransformer: a comprehensive computational tool for small molecule metabolism prediction and metabolite identification. Journal of Cheminformatics, 11(1), 2. https://doi.org/10.1186/s13321-018-0324-5 DOI: https://doi.org/10.1186/s13321-018-0324-5
Du, X., Li, Y., Xia, Y.-L., Ai, S.-M., Liang, J., Sang, P., Ji, X.-L., & Liu, S.-Q. (2016). Insights into protein–ligand interactions: mechanisms, models, and methods. International Journal of Molecular Sciences, 17(2), 144. https://doi.org/10.3390/ijms17020144 DOI: https://doi.org/10.3390/ijms17020144
García Meijide, J. A., & Gómez-Reino Carnota, J. J. (2000). Fisiopatología de la ciclooxigenasa-1 y ciclooxigenasa-2. Revista Española de Reumatología, 27(1). https://www.elsevier.es/es-revista-revista-espanola-reumatologia-29-articulo-fisiopatologia-ciclooxigenasa-1-ciclooxigenasa-2-8546
González-Sarrías, A., Espín-Aguilar, J. C., Romero-Reyes, S., Puigcerver, J., Alajarín, M., Berná, J., Selma, M. V., & Espín, J. C. (2022). Main Determinants Affecting the Antiproliferative Activity of Stilbenes and Their Gut Microbiota Metabolites in Colon Cancer Cells: A Structure–Activity Relationship Study. International Journal of Molecular Sciences, 23(23), 15102. https://doi.org/10.3390/ijms232315102 DOI: https://doi.org/10.3390/ijms232315102
Greten, F. R., & Grivennikov, S. I. (2019). Inflammation and cancer: triggers, mechanisms, and consequences. Immunity, 51(1), 27–41. https://doi.org/10.1016/j.immuni.2019.06.025 DOI: https://doi.org/10.1016/j.immuni.2019.06.025
Gupta, O., & Rani, S. (2011). Bioinformatics Applications and Tools: An Overview. CiiT International Journal of Biometrics and Bioinformatics, 3(3), 107–110.
Iglesias-Aguirre, C. E., Vallejo, F., Beltrán, D., Berná, J., Puigcerver, J., Alajarín, M., Selma, M. V., & Espín, J. C. (2022). 4-Hydroxydibenzyl: a novel metabolite from the human gut microbiota after consuming resveratrol. Food & Function, 13(14), 7487–7493. https://doi.org/10.1039/D2FO01475K DOI: https://doi.org/10.1039/D2FO01475K
Ko, J.-H., Sethi, G., Um, J.-Y., Shanmugam, M. K., Arfuso, F., Kumar, A. P., Bishayee, A., & Ahn, K. S. (2017). The role of resveratrol in cancer therapy. International Journal of Molecular Sciences, 18(12), 2589. https://doi.org/10.3390/ijms18122589 DOI: https://doi.org/10.3390/ijms18122589
Kurowska, A., Ziemichód, W., Herbet, M., & Piątkowska-Chmiel, I. (2023). The Role of Diet as a Modulator of the Inflammatory Process in the Neurological Diseases. Nutrients, 15(6), 1436. https://doi.org/10.3390/nu15061436 DOI: https://doi.org/10.3390/nu15061436
Leláková, V., Šmejkal, K., Jakubczyk, K., Veselý, O., Landa, P., Václavík, J., Bobáľ, P., Pížová, H., Temml, V., Steinacher, T., Schuster, D., Granica, S., Hanáková, Z., & Hošek, J. (2019). Parallel in vitro and in silico investigations into anti-inflammatory effects of non-prenylated stilbenoids. Food Chemistry, 285, 431–440. https://doi.org/10.1016/j.foodchem.2019.01.128 DOI: https://doi.org/10.1016/j.foodchem.2019.01.128
Li, B., Xiong, M., & Zhang, H.-Y. (2014). Elucidating Polypharmacological Mechanisms of Polyphenols by Gene Module Profile Analysis. International Journal of Molecular Sciences, 15(7), 11245–11254. https://doi.org/10.3390/ijms150711245 DOI: https://doi.org/10.3390/ijms150711245
Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1 DOI: https://doi.org/10.1016/S0169-409X(96)00423-1
Makarewicz, M., Drożdż, I., Tarko, T., & Duda-Chodak, A. (2021). The interactions between polyphenols and microorganisms, especially gut microbiota. Antioxidants, 10(2), 188. https://doi.org/10.3390/antiox10020188 DOI: https://doi.org/10.3390/antiox10020188
Malaguarnera, L. (2019). Influence of Resveratrol on the Immune Response. Nutrients, 11(5), 946. https://doi.org/10.3390/nu11050946 DOI: https://doi.org/10.3390/nu11050946
Malesza, I. J., Malesza, M., Walkowiak, J., Mussin, N., Walkowiak, D., Aringazina, R., Bartkowiak-Wieczorek, J., & Mądry, E. (2021). High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells, 10(11), 3164.
https://doi.org/10.3390/cells10113164 DOI: https://doi.org/10.3390/cells10113164
Martínez-Canabal, A., & Rivas-Arancibia, S. (2005). Funciones de las prostaglandinas en el sistema nervioso central. Revista de La Facultad de Medicina, 48(5), 210–216. https://www.medigraphic.com/pdfs/facmed/un-2005/un055i.pdf
Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature, 454(7203), 428–435. https://doi.org/10.1038/nature07201 DOI: https://doi.org/10.1038/nature07201
Méndez López, L. F., González Llerena, J. L., Vázquez Rodríguez, J. A., Medellín Guerrero, A. B., González Martínez, B. E., Solís Pérez, E., & López-Cabanillas Lomelí, M. (2024). Dietary Modulation of the Immune System. Nutrients, 16(24), 4363.
https://doi.org/10.3390/nu16244363 DOI: https://doi.org/10.3390/nu16244363
Méndez-López, L. F., Sosa de León, D., López-Cabanillas Lomelí, M., González-Martínez, B. E., & Vázquez-Rodríguez, J. A. (2022). Phytochemicals from Vicia faba beans as ligands of the aryl hydrocarbon receptor to regulate autoimmune diseases. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.790440 DOI: https://doi.org/10.3389/fnut.2022.790440
Meng, X., Zhou, J., Zhao, C.-N., Gan, R.-Y., & Li, H.-B. (2020). Health Benefits and Molecular Mechanisms of Resveratrol: A Narrative Review. Foods, 9(3), 340. https://doi.org/10.3390/foods9030340 DOI: https://doi.org/10.3390/foods9030340
Murias, M., Handler, N., Erker, T., Pleban, K., Ecker, G., Saiko, P., Szekeres, T., & Jäger, W. (2004). Resveratrol analogues as selective cyclooxygenase-2 inhibitors: synthesis and structure–activity relationship. Bioorganic & Medicinal Chemistry, 12(21), 5571–5578. https://doi.org/10.1016/j.bmc.2004.08.008 DOI: https://doi.org/10.1016/j.bmc.2004.08.008
Murota, K., Nakamura, Y., & Uehara, M. (2018). Flavonoid metabolism: the interaction of metabolites and gut microbiota. Bioscience, Biotechnology, and Biochemistry, 82(4), 600–610. https://doi.org/10.1080/09168451.2018.1444467 DOI: https://doi.org/10.1080/09168451.2018.1444467
Pannu, N., & Bhatnagar, A. (2019). Resveratrol: from enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomedicine & Pharmacotherapy, 109, 2237–2251. https://doi.org/10.1016/j.biopha.2018.11.075 DOI: https://doi.org/10.1016/j.biopha.2018.11.075
Prieto-Martínez, F. D., Arciniega, M., & Medina-Franco, J. L. (2018). Acoplamiento Molecular: Avances Recientes y Retos. TIP Revista Especializada En Ciencias Químico-Biológicas, 21. https://doi.org/10.22201/fesz.23958723e.2018.0.143 DOI: https://doi.org/10.22201/fesz.23958723e.2018.0.143
Singh, A., Zahra, S., & Kumar, S. (2019). In-silico Tools in Phytochemical Research. In Phytochemistry: An in-silico and in-vitro Update (pp. 351–372). Springer Singapore. https://doi.org/10.1007/978-981-13-6920-9_19 DOI: https://doi.org/10.1007/978-981-13-6920-9_19
Springer, M., & Moco, S. (2019). Resveratrol and its human metabolites—effects on metabolic health and obesity. Nutrients, 11(1), 143. https://doi.org/10.3390/nu11010143 DOI: https://doi.org/10.3390/nu11010143
Walle, T., Hsieh, F., DeLegge, M. H., Oatis, J. E., & Walle, U. K. (2004). High Absorption but Very Low Bioavailability of Oral Resveratrol in Humans. Drug Metabolism and Disposition, 32(12), 1377–1382. https://doi.org/10.1124/dmd.104.000885 DOI: https://doi.org/10.1124/dmd.104.000885
Wishart, D. S., Tian, S., Allen, D., Oler, E., Peters, H., Lui, V. W., Gautam, V., Djoumbou-Feunang, Y., Greiner, R., & Metz, T. O. (2022). BioTransformer 3.0—a web server for accurately predicting metabolic transformation products. Nucleic Acids Research, 50(W1), W115–W123. https://doi.org/10.1093/nar/0 DOI: https://doi.org/10.1093/nar/gkac313
Xu, Y., Fang, M., Li, X., Wang, D., Yu, L., Ma, F., Jiang, J., Zhang, L., & Li, P. (2024). Contributions of Common Foods to Resveratrol Intake in the Chinese Diet. Foods, 13(8), 1267. https://doi.org/10.3390/foods13081267 DOI: https://doi.org/10.3390/foods13081267
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Alejandra Niño Sánchez, Alpha Berenice Medellín Guerrero, Elizabeth Solís Pérez, Manuel López-Cabanillas Lomelí, Luis Fernando Méndez López

This work is licensed under a Creative Commons Attribution 4.0 International License.
The rights of the work belong to the author or authors, however, by sending it for publication in the Public Health and Nutrition Magazine of the Faculty of Public Health and Nutrition of the Autonomous University of Nuevo León, they grant the right for its first publication in between electronic, and possibly, in print to the Public Health and Nutrition Magazine. The license used is the Creative Commons attribution, which allows third parties to use what is published whenever the authorship of the work is mentioned and the first publication that is in the Public Health and Nutrition Magazine. Likewise, the author or authors will take into account that it will not be allowed to send the publication to any other journal, regardless of the format. The authors will be able to make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in the Public Health and Nutrition Magazine (e.g., institutional repository or publication in a book) provided they clearly state that The work was published for the first time in the Public Health Magazine, Magazine of the Faculty of Public Health and Nutrition of the Autonomous University of Nuevo León.





